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1 Introduction

We denote by [B1, B2] the set of all bounded linear operators mapping the Banach space B1 into the Banach
space B2, [B1] ≡ [B1, B1].

It is known [1] that for any operatorA = X +ZY , whereX,Y, Z ∈ [B1] and Z is an involution, Z2 = I , the
Gohberg–Krupnik matrix equality

H

[
A 0
0 A1

]
H−1 = D,

is fulfilled, where A1 is an additional associated operator,A1 = X − ZY , and

H =
1√
2

[
I I
Z −Z

]
, H−1 =

1√
2

[
I Z
I −Z

]
, D =

[
X ZY Z
Y ZXZ

]
.

We denote the Cauchy singular integral operator along a contour Γ by

(SΓϕ)(t) =
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ

and the identity operator on Γ by (IΓϕ)(t) = ϕ(t).
Suppose that X = aIΓ + cSΓ, Y = (Zb)IΓ + (Zd)SΓ, where a, b, c, d are bounded measurable functions on

Γ and (ZΓϕ)(τ) = ϕ(−τ). We denote the unit circle by T and the real axis by R. The matrix equality takes the
form

H

[
aIΓ + bZΓ + cSΓ + dZΓSΓ 0

0 aIΓ − bZΓ + cSΓ − dZΓSΓ

]
H−1 = DΓ, (1.1)
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where DΓ is a matrix characteristic singular integral operator:

DT =
[

a b
(ZTb) (ZTa)

]
IT +

[
c d

(ZTd) (ZTc)

]
ST,

DR =
[

a b
(ZRb) (ZRa)

]
IR +

[
c −d

(ZRd) (−ZRc)

]
SR.

The operators DT and DR are different because Z is an orientation-preserving shift on T, ZTST = STZT, but on
R it is an orientation-reversing shift , ZRSR = −SRZR.

In the article [2] we obtained a direct relation between the operator A with a model involution and a matrix
characteristic singular integral operator without additional associated operators: for an orientation-preserving
shift it is a similarity transform FAF−1 and for an orientation-reversing shift it is a transform by two invertible
operators HAE . We formulate these results below.

Let Γ and γ be contours, and let γ ⊂ Γ. The extension of a function f(t), t ∈ γ, to Γ\γ by the value zero, will
be denoted by

(
JΓ\γf

)
(t), t ∈ Γ. The restriction of a function ϕ(t), t ∈ Γ, to γ will be denoted by (Cγϕ)(t),

t ∈ γ. The characteristic function of the set γ given on Γ will be denoted by χγ(t), t ∈ Γ.
Let Lp(Γ, ρ) denote the space of functions on Γ which are summable in the p-th power after multiplication by

the weight-function ρ, and let Lm
p (Γ, ρ) denote the space of m-dimensional vector-functions with components

from Lp(Γ, ρ).
We define L = {z : |z| = 1, 0 < arg z < 2π/m}, (Wmϕ)(t) = ϕ(εmt), εm := cos 2π

m + i sin 2π
m and

M

⎡⎢⎣ϕ1

...
ϕm

⎤⎥⎦ =
m∑

k=1

W−k+1
m JT\Lϕk, M ∈ [Lm

2 (L), L2(T)], M−1ϕ =

⎡⎢⎢⎢⎢⎣
CLϕ

CLWmϕ

...
CLWm−1

m ϕ

⎤⎥⎥⎥⎥⎦ ;

Π =
1√
m

[
ε(r−1)(k−r−1)

]m

k,r=1
, Π−1 =

1√
m

[
ε(k−1)(k−r+1)

]m

k,r=1
;

V =

⎡⎢⎢⎢⎣
0 1

0 1
. . . 1

1 0

⎤⎥⎥⎥⎦ , Π−1VΠ = Ω, Ω = diag
[
1, ε1, . . . , εm−1

]
;

G(t) = diag
[
1, t1, . . . , tm−1

]
, G−1(t) = diag

[
1, t−1, . . . , t1−m

]
, t ∈ L;

(Nζ)(t) = ζ(tm), N ∈ [Lm
2 (T), Lm

2 (L)],
(
N−1ζ

)
(t) = ζ

(
t

1
m

)
.

Theorem 1.1 ([2, Theorem 2.16, p. 240]) The singular integral operator A with the shift-rotation Wm at the
angle 2π/m and bounded measurable coefficients,

A =
m−1∑
k=0

[ak(t)IT + bk(t)ST]W k
m, A ∈ [L2(T)],

is similar to the matrix characteristic singular integral operatorDT:

DT = F−1AF , DT = uIT + vST, DT ∈ Lm
2 (T), (1.2)

where

F = MΠGN ∈ [Lm
2 (T), L2(T)], F−1 = N−1G−1Π−1M−1 ∈ [L2(T), Lm

2 (T)].
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1110 Karelin: Applications of operator equalities

The connection between the coefficients of the operator A and the coefficients of the operatorDT is given by the
formulas:

u(t) =
[
t(1−k)/mε(k−1)(k−r+1)

√
m

]m

k,r=1

u1

(
t1/m

)[ε(r−1)(k−r−1)t(r−1)/m

√
m

]m

k,r=1

,

v(t) =
[
t(1−k)/mε(k−1)(k−r+1)

√
m

]m

k,r=1

v1
(
t1/m

) [
ε(r−1)(k−r−1)t(r−1)/m

√
m

]m

k,r=1

, t ∈ T,

where

u1(t) =

⎡⎢⎢⎢⎣
a0(t) a1(t) . . . am−1(t)

am−1(εt) a0(εt) . . . a1(εt)
...

...
. . .

...
a1(εm−1t) a2(εm−1t) . . . a0(εm−1t)

⎤⎥⎥⎥⎦ ,

v1(t) =

⎡⎢⎢⎢⎣
b0(t) b1(t) . . . bm−1(t)

bm−1(εt) b0(εt) . . . b1(εt)
...

...
. . .

...
b1(εm−1t) b2(εm−1t) . . . b0(εm−1t)

⎤⎥⎥⎥⎦ , t ∈ L.

Now we formulate a theorem for the case of an orientation reversing shift.
We denote the positive semiaxis by R+ = (0,+∞) and the negative semiaxis by R− = (−∞, 0);

(Qϕ)(x) =

√
δ2 + β

x− δ
ϕ[α(x)], α(x) =

δx+ β

x− δ
, δ ∈ R, β ∈ R, δ2 + β > 0,

Q is an involution,Q2 = IR generated by a Carleman linear-fractional orientation-reversing shift, α(α(x)) ≡ x;

(Θϕ)(x) =
x2 − x1

x2 − x
ϕ

(
x− x1

x2 − x

)
,

(
Θ−1ϕ

)
(x) =

1
x+ 1

ϕ

(
x2x+ x1

x+ 1

)
,

where

x1 = δ −
√
δ2 + β, x2 = δ +

√
δ2 + β;

(NR+ϕ)(t) = ϕ
(
t2

)
,

(
N−1

R+
ϕ
)
(t) = ϕ

(√
t
)
;

P =
[
SR+ + U1,R+ 0

0 IR+

]
;

Π±1 =
1√
2

[
1 1
1 −1

]
;

MR+

[
ϕ1

ϕ2

]
=

{
ϕ1(t), t ∈ R+,

ϕ2(−t), t ∈ R−,
M−1

R+
ϕ =

[
ϕ(t)
ϕ(−t)

]
, t ∈ R+;

Θ ∈ [L2(R)], P ∈
[
L2

2(R+)
]
, NR+ ∈

[
L2

2

(
R+, t

− 1
4
)
, L2

2(R+)
]
, MR+ ∈

[
L2

2(R+), L2(R)
]
.

Theorem 1.2 ([2, Theorem 3.11, p. 244]) The singular integral operator B with the involution Q, with
bounded measurable coefficients,

BR = aIR + bQ+ cSR + dQSR, BR ∈ [L2(R)],

can be reduced by invertible operators to the matrix characteristic singular integral operatorDR+ :

DR+ = HBRE , DR+ = uIR+ + vSR+ , DR+ ∈
[
L2

2

(
R+, t

− 1
4
)]
, (1.3)

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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where

H = N−1
R+

Π−1M−1
R

Θ−1 ∈
[
L2

2(R+), L2
2

(
R+, t

− 1
4
)]
,

E = ΘMRΠPNR+ ∈
[
L2

2

(
R+, t

− 1
4
)
, L2

2(R+)
]
.

The relation between the coefficients of the operator BR and the coefficients of the operator DR+ is given by
the formulas:

u(t) =
1

2

"
(c(ζ+(t)) + d(ζ+(t))) − (c(ζ−(t)) + d(ζ−(t))) (a(ζ+(t)) + b(ζ+(t))) − (a(ζ−(t)) + b(ζ−(t)))

(c(ζ+(t)) + d(ζ+(t))) + (c(ζ−(t)) + d(ζ−(t))) (a(ζ+(t)) + b(ζ+(t))) + (a(ζ−(t)) + b(ζ−(t)))

#
, (1.4)

v(t) =
1

2

"
(a(ζ+(t)) − b(ζ+(t))) + (a(ζ−(t)) − b(ζ−(t))) (c(ζ+(t)) − d(ζ+(t))) + (c(ζ−(t)) − d(ζ−(t)))

(a(ζ+(t)) − b(ζ+(t))) − (a(ζ−(t)) − b(ζ−(t))) (c(ζ+(t)) − d(ζ+(t))) − (c(ζ−(t)) − d(ζ−(t)))

#
, (1.5)

where

ζ+(t) =
x2

√
t+ x1√
t+ 1

, ζ−(t) =
−x2

√
t+ x1

−
√
t+ 1

, t ∈ R+.

We will refer to formulas (1.2) and (1.3) as operator equalities. In this paper we will use the operator equalities
to study the invertibility properties of singular integral operators.

In Section 2, we consider a Riemann boundary value problem with shift and piecewise constant coefficients.
In Section 3, we consider a special case of the matrix characteristic singular integral operator. The coefficients of
the operator are piecewise constant matrix-functions having at most four different values.

We are interested in the questions connected with solvability problems: descriptions of the kernels, conditions
for the invertibility, construction of the solutions which are more detailed than the study of Fredholm properties
[1], [4].

Using the operator equalities we obtain conditions for the existence and uniqueness of solution to the boundary
value problem and conditions for the invertibility of the matrix characteristic operator.

2 Riemann boundary value problem with piecewise constant coefficients

We consider the following problem: find an analytical function Φ(z) in the strip T = {z : −1 ≤ Imz ≤ +1}
subject to the functional relation

A(x)Φ(x + i) +B(x)Φ(x − i) + C(x)Φ(x) = H(x), (2.1)

where x ∈ R, R = (−∞,+∞), the coefficients A(x), B(x), C(x) are bounded measurable functions, and
H(x) ∈ L2(R). We assume as well that Φ(x+ i) ∈ L2(R),Φ(x − i) ∈ L2(R).

Our main aim in this section is to obtain conditions for the existence and uniqueness of solution to the boundary
value problem for the case of piecewise constant coefficients with two different values and a point of discontinuity
at x = 0.

We start with the formulation of a result about invertibility of characteristic singular integral operators with a
certain piecewise constant matrix-function [5], [6].

Let Lp(R, �) = {f : �f ∈ Lp}, � =
(
1 + t2

)ν/2 |t|ν0 |t − 1|ν1 , 1 < p < ∞, ν2 = 1 − 2
p − ν − ν0 − ν1,

− 1
p < νk < 1 − 1

p , k = 0, 1, 2.
Given two non-singular constant matrices A and B, following [5] we denote the arguments of the eigenvalues

of A,A−1B and B−1 by 2πν0k(A,B), 2πν1k(A,B), and 2πν2k(A,B) (k = 1, 2), respectively. In case the
matrices A and B have common eigenvectors, let us agree upon attaching the same subscript k to the gammas
associated with the corresponding eigenvalues. If the matrices A and B share (up to linear dependence) exactly
one common eigenvector, we shall label the corresponding gamma by the subscript k = 2. We introduce the
numbers

lk(A,B) =
2∑

j=0

(νjk(A,B) + [δjk(A,B)]) , δjk(A,B) =
1
p

+ νj − νjk(A,B),

k = 1, 2, j = 0, 1, 2.

(2.2)

www.mn-journal.com c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1112 Karelin: Applications of operator equalities

By [x] we mean the integral part of x.

Theorem 2.1 ([5, Corollary 2, p. 248]) For the operator R(GR) = P+
R

+ GRP
−
R

, generated by a matrix-
function GR = E2χ(−∞,0) +Aχ(0,1) +Bχ(1,+∞), to be invertible in L2

p(R, �), it is necessary and sufficient that
the constant matrices A,B are non-singular, that the numbers δjk(A,B) are non-integer, and that at least one of
the following conditions hold:

(i) A and B have no common eigenvectors and l1(A,B) = −l2(A,B);
(ii) A and B do not commute, possess a common eigenvector, and l1(A,B) = −l2(A,B) ≥ 0;

(iii) A and B commute and l1(A,B) = l2(A,B) = 0.

Let A±, B±, C± be constants.

Theorem 2.2 Let 3A+ +B+ �= 0 and 3A− +B− �= 0. If the matrices

A=− 2
3A++B+

[
3A++A−+B++3B−+4i(C++C−) 3A+−A−+B+−3B−+4i(C++C−)

−3A++A−−B++3B−+4i(C++C−) −3A+−A−−B+−3B−+4i(C++C−)

]
(2.3)

and

B=− 2
3A−+B−

[
A++3A−+3B++B−+4i(C++C−) −A++3A−−3B++B−+4i(C++C−)

A+−3A−+3B+−B−+4i(C++C−) −A+−3A−−3B+−B−+4i(C++C−)

]
(2.4)

satisfy the conditions
(a) detA �= 0, detB �= 0,
(b) for k = 1, 2, and j = 0, 1, 2, the numbers δjk are not integers,
(c) one of the three conditions (i), (ii), (iii) is fulfilled,

then the Riemann boundary value problem with shift (2.1):

A(x)Φ(x + i) +B(x)Φ(x − i) + C(x)Φ(x) = H(x), x ∈ R,

and piecewise constant coefficients

A(x) = A−χR−(x) +A+χR+(x),

B(x) = B−χR−(x) +B+χR+(x),

C(x) = C−χR−(x) + C+χR+(x),

admits a unique solution.

P r o o f. To prove the theorem we follow the schema of [3].
According to [4] the boundary value problem (2.1) can be transformed to the following integral equation with

endpoint singularities considered on the space L2(T ),

aT (ξ)wT (ξ) +
cT (ξ)
πi

∫
T

wT (τ) dτ
τ − ξ

− dT (ξ)
πi

∫
T

wT (τ) dτ
1 − ξτ

= gT (ξ), T = (−1, 1), (2.5)

where

aT (ξ) = π
A([γ(ξ)]) +B([γ(ξ)])

2
,

cT (ξ) = π
A([γ(ξ)]) −B([γ(ξ)])

4
,

dT (ξ) = −πiC[γ(ξ)],

gT (ξ) =
πH [γ(ξ)]√

1 − ξ2
,

γ(ξ) =
1
π

ln
1 + ξ

1 − ξ
.

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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The solutions of problem (2.1) and Equation (2.5) are connected by

wT (ξ) =
Y [γ(ξ)]√

1 − ξ2
, Y (x) = (Fω)(x), ω(x) = [exp(x) + exp(−x)]

(
F−1Φ

)
(x),

where F and F−1 are the direct and inverse Fourier transformation.
Taking into account that

1
πi

∫
T

wT (τ)
1 − ξτ

dτ = −(CTQT SRJR\T wT )(ξ), ξ ∈ T ,

where Q is an involution generated by the points x1 = −1, x2 = +1,

(QT ϕ)(x) =
1
x
ϕ[α(x)], α(x) =

1
x
, x ∈ R,

rewrite (2.5) in the form

(KT wT )(ξ) = gT (ξ), KT = aT IT + cT ST + dT CT QT SRJR\T , KT ∈ [L2(T )].

Here

aT (ξ) =
1
2
π[(A− +B−)χ(−1,0)(ξ) + (A+ +B+)χ(0,1)(ξ)],

cT (ξ) =
1
4
π[(A− −B−)χ(−1,0)(ξ) + (A+ −B+)χ(0,1)(ξ)],

dT (ξ) = −πi[C−χ(−1,0)(ξ) + C+χ(0,1)(ξ)], ξ ∈ T .

Extend the operatorKT to the whole real axis R:

K1
R

= ãRIR + c̃RSR + d̃RTRSR,

where

ãR = (χR\T + JR\T aT ), c̃R = (JR\T cT ), d̃R = (JR\T dT ).

The operatorKT is invertible in the space L2(T ) if and only if the operatorK1
R

is invertible in the space L2(R).
Note [3] that if K−1

T is the inverse operator of KT , then the operator(
K1

R

)−1 = χR\T IR + JR\TK
−1
T CT

(
IR −K1

R
χR\T IR

)
is the inverse operator of the operator K1

R
, and if

(
K1

R

)−1
is the inverse operator of K1

R
, then the operator

K−1
T = CT

(
K1

R

)−1
JR\T

is the inverse operator of the operator KT .
Applying the operator equality (1.3) to the equation

(
K1

R
ϕ
)
(x) = JR\T gT , we obtain the equivalent matrix

characteristic singular integral equation

D̃R+ψR+ = g̃R+ , D̃R+ = HK1
R
E = ũR+IR+ + ṽR+SR+ , D̃R+ ∈

[
L2

2

(
R+, t

− 1
4
)]
, (2.6)

where

g̃R+ = HJR\T gT , g̃R+ ∈ L2
2

(
R+, t

− 1
4
)
,

and the coefficients have the form

ũR+(t) =
1
2

[
ũ11(t) ũ12(t)
ũ21(t) ũ22(t)

]
, ṽR+(t) =

1
2

[
ṽ11(t) ṽ12(t)
ṽ21(t) ṽ22(t)

]
, t ∈ R+,

www.mn-journal.com c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1114 Karelin: Applications of operator equalities

with

ũ11(t) = ũ21(t) =
[
1
4
π(A− −B−) − πiC−

]
χ(1,∞)(t) +

[
1
4
π(A+ −B+) − πiC+

]
χ(0,1)(t),

ũ12(t) =
[
1
2
π(A− +B−) − 1

]
χ(1,∞)(t) +

[
1
2
π(A+ +B+) − 1

]
χ(0,1)(t),

ũ22(t) =
[
1
2
π(A− +B−) + 1

]
χ(1,∞)(t) +

[
1
2
π(A+ +B+) + 1

]
χ(0,1)(t),

ṽ11(t) = ũ22(t),

ṽ21(t) = ũ12(t),

ṽ12(t) = ṽ22(t) =
[
1
4
π(A− −B−) + πiC−

]
χ(1,∞)(t) +

[
1
4
π(A+ −B+) + πiC+

]
χ(0,1)(t).

The solutions of Equations (2.5) and (2.6) are connected by

ψR+(t) =
(
E−1(JR\T ωT )

)
(t).

Note that the coefficients ũR+ and ũR+ are piecewise constant matrix-functions with two values and a point of
discontinuity at x = 1 on the contour R+.

The operator D̃R+ is extended on R− = (−∞, 0)

D̃1
R
ψ = JR− g̃R+ , D̃1

R
= (χR− + JR− ũR+)IR + (JR− ṽR+)SR, D̃1

R
∈

[
L2

2

(
R, t−

1
4
)]
.

The operator D̃R+ is invertible on the space L2
2

(
R+, t

− 1
4
)

if and only if the operator D̃1
R

is invertible on the space

L2
2

(
R, t−

1
4
)
.

Rewrite the operator D̃1
R

using the projections P+
R

= 1
2 (IR + SR) and P−

R
= 1

2 (IR − SR):

D̃1
R

= R(U ,V) = UP+
R

+ VP−
R
,

where

U = E2χR− + U(0,1)χ(0,1) + U(1,∞)χ(1,+∞),

V = E2χR− + V(0,1)χ(0,1) + V(1,∞)χ(1,+∞),

E2 = diag[1, 1],

U(0,1) =
1
2

[
π
2 (A+ +B+) + π

4 (A+ −B+) − πC+ + 1 π
2 (A+ +B+) + π

4 (A+ −B+) + πC+ − 1
π
2 (A+ +B+) + π

4 (A+ −B+) − πC+ − 1 π
2 (A+ +B+) + π

4 (A+ −B+) + πC+ + 1

]
,

U(1,+∞) =
1
2

[
π
2 (A− +B−) + π

4 (A −B−) − πC− + 1 π
2 (A− +B−) + π

4 (A −B−) + πC− − 1
π
2 (A− +B−) + π

4 (A −B−) − πC− − 1 π
2 (A− +B−) + π

4 (A −B−) + πC− + 1

]
,

V(0,1) =
1
2

[
π
2 (A− +B−) − π

4 (A −B−) + πC− + 1 −π
2 (A− +B−) + π

4 (A −B−) + πC− + 1
π
2 (A− +B−) − π

4 (A −B−) + πC− − 1 −π
2 (A− +B−) + π

4 (A −B−) + πC− − 1

]
,

V(1,+∞) =
1
2

[
π
2 (A+ +B+) − π

4 (A+ −B+) + πC+ + 1 −π
2 (A+ +B+) + π

4 (A+ −B+) + πC+ + 1
π
2 (A+ +B+) − (A+ −B+) + πC+ − 1 π

2 (A+ +B+) + π
4 (A+ −B+) + πC+ − 1

]
.

We assume that det(ũR + ṽR) �= 0, or det(E2χR− + U(0,1)χ(0,1) + U(1,∞)χ(1,+∞)) �= 0, or

detU(0,1) =
2

3A+ +B+
�= 0, detU(1,∞) =

2
3A− +B−

�= 0.
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Having calculated the matrices A = U−1
(0,1)V(0,1) and B = U−1

(1,+∞)V(1,+∞), we obtain

GR = (χR− + JR−(ũR+ + ṽR+))−1(χR− + JR−(ũR+ − ṽR+))

= U−1V
= χR−E2 + χ(0,1)A + χ(1,+∞)B).

Here the matrices A and B are given by (2.3) and (2.4) respectively.
Consider the operatorR(GR) = P+

R
+ GP−

R
acting on the space L2

p(R, �), �(x) = |x|−1/4 .
The matrix GR(x), x ∈ R, is a piecewise constant matrix-function with three values and points of discontinuity

at x = 0, x = 1. Applying [5, Corollary 2] to the operator R(GR), we complete the proof of the theorem.

3 Invertibility of matrix characteristic singular integral operators with coefficients of a
special structure

Let us consider the weight space Lp(R, ρW ), p ≥ 1, (ρW )(x) =
∏4

j=1 |x − xj |µj , x1 = −1, x2 = 1, x3 = 0,
x4 = i with the norm ‖f‖Lp(R,ρW ) = ‖ρW f‖Lp(R), assuming that the following conditions hold:

−1
p
< µj <

p− 1
p

, j = 1, 2, 3;
−1
p
<

4∑
j=1

µj <
p− 1
p

; µ3 = −
4∑

j=1

µj +
p− 2
p

. (3.1)

In the space Lp(R, ρW ) consider the operator DR = uIR + vSR with coefficients which are piecewise constant
matrix-functions with three points of discontinuity at x = −1, x = 0, x = 1:

u =
[
a−2 b−2

b+2 a+2

]
χ(−∞,−1) +

[
a−1 b−1

b+1 a+1

]
χ−1,0) + V

[
a−1 b−1

b+1 a+1

]
V χ(0,+1) + V

[
a−2 b−2

b+2 a+2

]
V χ(1,∞),

v =
[
c−2 −d−2

d+2 −c+2

]
χ(−∞,−1) +

[
c−1 −d−1

d+1 −c+1

]
χ(−1,0) − V

[
c−1 −d−1

d+1 −c+2

]
V χ(0,1) − V

[
c−2 −d−2

d+2 −c+2

]
V χ(1,∞),

where

V =
[
0 1
1 0

]
.

From (3.1) it follows that SR ∈ [Lp(R, ρW )] and WR ∈ [Lp(R, ρW )], (WRϕ)(x) = ϕ(−x).
In this section conditions for the invertibility of the operator DR in the space Lp(R, ρW ) are obtained.
We introduce the functions

a(x) = a−2χ(−∞,−1)(x) + a−1χ(−1,0)(x) + a+1χ(0,1)(x) + a+2χ(1,+∞)(x),

b(x) = b−2χ(−∞,−1)(x) + b−1χ(−1,0)(x) + b+1χ(0,1)(x) + b+2χ(1,+∞)(x),

c(x) = c−2χ(−∞,−1)(x) + c−1χ(−1,0)(x) + c+1χ(0,1)(x) + c+2χ(1,+∞)(x),

d(x) = d−2χ(−∞,−1)(x) + d−1χ(−1,0)(x) + d+1χ(0,1)(x) + d+2χ(1,+∞)(x),

and construct the matrices

A±=−det−1

[
a−1+c−1 ∓b−1±d−1

∓b−2∓d−2 a−2−c−2

]
Π−1

[
a−2−c−2 ±b−1∓d−1

±b−2±d−2 a−1+c−1

][
a−1−c−1 ∓b−1∓d−1

∓b−2±d−2 a−2+c−2

]
ΠΩ,

B±=−det−1

[
a+1+c+1 ∓b+1±d+1

∓b+2∓d+2 a+2−c+2

]
Π−1

[
a+2−c+2 ±b+1∓d+1

±b+2±d+2 a+1+c+1

][
a+1−c+1 ∓b+1∓d+1

∓b+2±d+2 a+2+c+2

]
ΠΩ,

(3.2)

where

Π =
1√
2

[
1 1
1 −1

]
, Ω =

[
1 0
0 −1

]
.

Using definitions (2.2) of Section 2, we introduce the constants l±k = lk
(
A±,B±)

, δ±jk = δjk

(
A±,B±)

.
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Theorem 3.1 Let

det
[
a−1 + c−1 ∓b−1±d−1

∓b−2∓d−2 a−2 − c−2

]
�= 0

and let

det
[
a+1+c+1 ∓b+1±d+1

∓b+2∓d+2 a+2−c+2

]
�= 0.

In order that the operatorDR,

DR =
[
a(x) b(x)
b(−x) a(−x)

]
IR +

[
c(x) −d(x)
d(−x) −c(−x)

]
SR,

with piecewise constant coefficients and points of discontinuity at x = −1, x = 0, x = 1, is invertible on
the space Lp(R, ρW ), it is necessary and sufficient that the matrices A+, B+ and A−, B− have the following
properties:

(a) detA+ �= 0, detB+ �= 0 and detA− �= 0, detB− �= 0;
(b) for k = 1, 2, and j = 0, 1, 2, the numbers δ+jk and δ−jk are not integers;
(c) for the pair A+, B+ and for the pair A−, B− one of the following three conditions (i), (ii), (iii) is fulfilled.

P r o o f. By the Gohberg–Krupnik matrix equality (1.1)

1
2

[
IR IR

WR −WR

][
aIR + bWRIR + cSR + dWRSR 0

0 aIR − bWRIR + cSR − dWRSR

][
IR WR

IR −WR

]
= DR,

that the singular integral operator DR is invertible on the space Lp(R, ρW ), if and only if the operators B =
B+ = aIR + bIR + cSR + dQSR and B− = aIR − bIR + cSR − dQSR are invertible operators on the space
Lp(R, ρW ).

Applying the operator equality (1.3) to B+ and B−, we have

D±
R+

= HB±F = u±
R+
IR+ + v±

R+
SR+ , D±

R+
∈

[
L2

p(R+, �)
]
.

The weight ρW is transformed to

�(x) = |x|ν0 |x− 1|ν1 |x− i|ν , ν0 =
1
2

(
µ1 −

1
p

)
, ν1 = µ3, ν =

1
2
µ4.

From formulas (1.4), (1.5) the coefficients of the operator D±
R+

are

u±
R+

(t) =
1
2

[
(c−1 ± d−1) − (c−2 ± d−2) (a−1 ± b−1) − (a−2 ± b−2)
(c−1 ± d−1) + (c−2 ± d−2) (a−1 ± b−1) + (a−2 ± b−2)

]
χ(0,1)(t)

+
1
2

[
(c+1 ± d+1) − (c+2 ± d+2) (a+1 ± b+1) − (a+2 ± b+2)
(c+1 ± d+1) + (c+2 ± d+2) (a+1±b+1) + (a+2±b+2)

]
χ(1,∞)(t),

v±
R+

(t) =
1
2

[
(a−1 ∓ b−1) + (a−2 ∓ b−2) (c−1 ∓ d−1) + (c−2 ∓ d−2)
(a−1 ∓ b−1) − (a−2 ∓ b−2) (c−1 ∓ d−1) − (c−2 ∓ d−2)

]
χ(0,1)(t)

+
1
2

[
(a+1 ∓ b+1) + (a+2 ∓ b+2) (c+1 ∓ d+1) + (c+2 ∓ d+2)

(a+1 ∓ b+1) − (a+2 ∓ b+2) (c+1 ∓ d+1) − (c+2 ∓ d+2)

]
χ(1,∞)(t).

Extend the operator D±
R+

to the entire real axes D±
R

= JR+CR− + JR−D±
R+
CR+ , D±

R
∈ [L2

p(R, �)], and rewrite

D±
R

using the projections

D±
R

= U±
R
P+

R
+ V±

R
P−

R
,
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where

U±
R

= χR− + JR−
(
u±

R
+ v±

R+

)
, V±

R
= χR− + JR−

(
u±

R
− v±

R+

)
.

The matrices U±
R

= u±
R+

(t) + v±
R+

(t) and V±
R

= u±
R+

(t) − v±
R+

(t) have the following form

U±
R

= χR−

+ JR−Π
{[

a−1 + c−1 ∓b−1±d−1

∓b−2∓d−2 a−2 − c−2

]
χ(0,1) +

[
a+1 + c+1 ∓b+1±d+1

∓b+2∓d+2 a+2 − c+2

]
χ(1,∞)

}
Π,

V±
R

= χR−

− JR−Π
{[

a−1 − c−1 ∓b−1∓d−1

∓b−2±d−2 a−2 + c−2

]
χ(0,1) +

[
a+1 − c+1 ∓b+1∓d+1

∓b+2±d+2 a+2 + c+2

]
χ(1,∞)

}
ΠΩ.

We assume that det
[
u±

R+
(t) + v±

R+
(t)

]
�= 0, or, rewriting in an equivalent form,

det
{[

a−1 + c−1 ∓b−1±d−1

∓b−2∓d−2 a−2 − c−2

]
χ(0,1) +

[
a+1 + c+1 ∓b+1±d+1

∓b+2∓d+2 a+2 − c+2

]
χ(1,∞)

}
�= 0.

Having calculated the matrix G± = (U±
R

)−1V±
R

, we obtain G± = χR− + A±χ(0,1) + B±χ(1,∞), where the
matrices A± and B± are given by formulas (3.2). The operator R(G±) = P+

R
+G±P−

R
is invertible on the space

L2
p(R, �) if and only if the operator D±

R+
is invertible on the space L2

p(R+, �).
Applying [5, Corollary 2] to the operator R(G±) we complete the proof of the theorem.

Analogous results can be obtained for the operatorsA ∈ [Lp(T, ρ)] with an orientation-preserving shift WT =
W2, (WTϕ)(t) = ϕ(−t):

A = aIT + bW + cST + dWST;

as well for the characteristic singular integral operatorsDT ∈ [L2
p(T, ρ)]:

DR =
[
a(x) b(x)
b(−x) a(−x)

]
IR +

[
c(x) −d(x)
d(−x) −c(−x)

]
SR,

where the coefficients ofAwould be such that the coefficients of the operator F−1AF from the operator equality
(1.2) would be piecewise constant matrices with three points of discontinuity.
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