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Reversible cellular automata are discrete dynamical systems based on
local interactions which are able to produce an invertible global behavior.
Reversible automata have been carefully analyzed by means of graph
and matrix tools, in particular the extensions of the ancestors in these
systems have a complete representation by Welch diagrams. This paper
illustrates how the whole information of a reversible one-dimensional
cellular automaton is conserved at both sides of the ancestors for
sequences with an adequate length. We give this result implementing a
procedure to obtain the inverse behavior by means of calculating and
studying a single Welch diagram corresponding with the extensions of
only one side of the ancestors. This work is a continuation of our
study about reversible automata both in the local [15] and global [16]
sense. An illustrative example is also presented.
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1 INTRODUCTION
Cellular automata are discrete dynamical systems which are able to yield

complex behaviours by means of simple interactions. The concept began
with John von Neumann and his work on self-reproducing systems which
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can be consulted in reference [20]. Other relevant works in this field can
be consulted in reference [1] and [23].

Reversible cellular automata are a special case of cellular automata where
the global mapping is invertible, that is, every global state of the automaton
has one and only one successor and the dynamics is deterministic in both
directions of time [13]. Reversible one-dimensional cellular automata have
been used for modeling and understanding reversible physical and chemical
phenomena [18,22], as well as for implementing data coding systems
[3,19,22]. The study of reversible automata was first treated in references [8]
and [10], and the main reference for the one-dimensional case is provided
in [4] studying reversible automata as automorphisms of the full shift,
presenting the topological properties of these systems. Another important
work about reversible one-dimensional cellular automata and their graph
presentations is provided in [11] and [12]. These papers have inspired other
studies about reversible automata based on graph presentations: [6,7,17],
and matrix tools: [9, 21].

One of the problems about reversible one-dimensional cellular automata
is how the information of the system is conserved and how we can use the
same to find the inverse behavior, in this sense there is a procedure provided
by Nasu using both Welch diagrams associated with the extensions of the
ancestors at both sides for obtaining the inverse local rule of a reversible
automaton [11]. In this paper we treat and resolve this question showing
that we can select any side of the ancestors in a reversible automaton and
get its information using a single Welch diagram corresponding with the
extensions of the ancestors at this side. In this sense we establish a symbolic
and matrix approach for calculating the Welch diagram and obtaining the
inverse local rule.

The results described in this work represent an extension of our study
for implementing a set of computational procedures which can be used
for illustrating specific properties of a given reversible cellular automaton,
for instance to obtain the properties of connectivity matrices [15], for
calculating the features of the transitive behavior in these systems [16] and
now for describing how the same information can be obtained in any side
of the ancestors.

The paper is organized as follows: Section 2 provides the basic
definitions of one-dimensional cellular automata; it also shows a procedure
for transforming any one-dimensional cellular automaton into another of
neighborhood size 2 to simplify the analysis. The properties of reversible
one-dimensional cellular automata are presented as well. Section 3 describes
how the extensions of the ancestors in a reversible automaton are represented
by Welch diagrams and the properties of such diagrams. Section 4 develops
matrix procedures for obtaining the right Welch diagram associated with
a particular reversible automaton, these procedures are also useful to get
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important features of this diagram and for calculating the inverse local
rule of the automaton by means of symbolic matrix products. Section 5
illustrates the previous results using a reversible automaton of 4 states.
Finally, Section 6 provides the concluding remarks of the paper.

2 PROPERTIES OF REVERSIBLE ONE-DIMENSIONAL
CELLULAR AUTOMATA

A one-dimensional cellular automaton consists of a one-dimensional array
of cells where each cell initially takes a single state from a finite set
K; the initial array of states is the initial configuration of the automaton.
Let k be the cardinality ofK and forn € Z*, let K" be the set of
words with n states. LetK* be the whole set of finite words and
for w € K*, let w* be the word formed by the undefined (but finite)
repetition ofw. Form,n € Z*, w € K™ andv € K", wv € K™ is an
extension ofw of lengthn, and forw, v € K*, wv € K* is just a finite
extension ofw.

The dynamics of the cellular automaton is defined by local interactions
of the cells in the initial array. For € Z* there is a mapping : K" — K
where eachw € K™ is a neighborhoody: is the size of the neighborhood
and ¢ is the local rule of the automaton. Every neighborhood yields
a single state ofK and ¢ is applied over each neighborhood in the
initial configuration, where every neighborhood shares 1 cells with the
contiguous neighborhoods at both sides. In this way the initial configuration
produces a nhew one by the action of the local pilend the global behavior
of the automaton depends on the properties of this rule. A et (k, m, ¢)
represent a one-dimensional cellular automatort astates, neighborhood
sizem and local rulep.

Take a cellular automatol = (k, m, ¢), for a € K and w € K™, if
¢(w) = a thenw is an ancestor of while a is the descendant af. We can
note thatw hasm — 1 more states tham. We extend this concept for larger
words, forn € Z*, n > m andv € K", let p(v) be word yielded by the local
rule ¢ applied over each one of the— m + 1 overlapping neighborhoods
forming v, hencep(v) = w € K""*! andv is an ancestor ofv.

We can use this property for transforming any cellular automaton
A= (k,m,¢) into a new cellular automatond’ = (k"~*,2,t). This
transformation was independently explained by Boykett and Kari; a
description of this process can be consulted in [2] and [5]. The relevance
of this result is that we need to study only cellular automata of the type
A = (k, 2, ) for understanding all the other cases, hence in the rest of
this paper we shall only treat these automata. In this case the locap rule
is represented by a matrix/, where the row and column indices are the
elements ofK and the entryi( j) =a in M, if ¢(i, j)=a € K.
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TABLE 1
Ordered pairs of states defining the nodes of the pair diagram.
(0,0) 0,1) 0,2) e 0k —1)
(1,0) 1,1) :
: : 2.2)
(k—10) e (=1k-1)

A cellular automatonA = (k, 2, ) is reversible if there exists a local
rule ¢~ (possibly with neighborhood size: # 2) such that it makes
invertible the global behavior ofl. Reversible automata have been widely
studied by their theoretical relevance and their practical applications, one
of the most detailed works being developed in [4] using a topological
and a combinatorial approach. In particular, Hedlund proves two important
properties of these systems; lgt= (k, 2, ¢) be a reversible automaton
and lety~! be its inverse local rule of neighborhood size then A has
the following properties:

Property 1 (Uniform multiplicity of ancestors)Every wordw € K* has
k ancestors.

Property 2 (Welch indices)Forn > m,the ancestors of every wonde K"
have L possible states in the lefmost position, converge into a unique state
and from this one, the ancestors haRepossible states in the rightmost
position fulfilling that LR = k.

The valueL is the left Welch index andR is the right Welch index of
the automaton, thus there is a unique way in which every word K"
returns in the evolution of the automaton, and its ancestors hawtial
states, a common central part aidfinal states. One way of knowing
if a cellular automatond = (k, 2, ¢) is reversible is constructing its pair
diagram. In this diagram, nodes are all the ordered pairs of states, these
nodes can be arranged as Table 1 indicates.

For two ordered pairsa( b) and @', b’), there is directed edge from
(a, b) to (@', D) if p(a,a’) = (b, b"). We can detect if the automatoh is
reversible reviewing the cycles of the pair diagram. If there exists a cycle
of lengthm formed by ordered pairs outside of the main diagonal in Table
1, then this cycle contains an ordered pair /) with a # b. Hence for
a,be K andu,v € K™ 1, there is a wordw € K with two ancestors;
one with formaua € K+ and another with fornbvb € K”**. Thus for
anyn € Z*, the wordw”" formed byn repetitions ofw has two possible
ancestors, ¢u)")a and (pv)")b; but this implies that the automaton cannot
be reversible. In this wayd is reversible if the cycles of the pair diagram
are only formed by the nodes from the main diagonal of Table 1.
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For a reversible automatad = (k, 2, ¢), let m € Z* be the minimum
length such that the ancestors of eackk K™ have Welch indiced R = k.
Different words inK™ have different ancestors, thus for the ancestors of
every word inK™, the set ofL initial states defines a left Welch subset
and the set ofR final states establishes a right Welch subset.

Another relevant paper about reversible cellular automata is presented by
Nasu applying graph theory [11]. In particular, Nasu proves the following

property:

Property 3 (Intersection propertyFor a reversible automatond = (k,
2, ¢), every left Welch subset has one and only one common state with
any right Welch subset.

Property 3 defines a unique way to return in the evolution of the
reversible automaton when we take finite configurations with periodic
boundary conditions, this will be illustrated in the example of Section 5.

Nasu defines two graphs using Welch subsets, the first is the left Welch
diagram formed by all the left Welch subsets and the second is the right
Welch diagram composed by all the right Welch subsets. In the next section
we briefly explain these definitions, a complete exposition of them can
be consulted in [11]. Nasu also provides a complete characterization for
Welch diagrams; based on these results we shall prove that a single Welch
diagram is enough to obtain the inverse rule of a reversible automaton.

3 WELCH DIAGRAMS

Let m be the minimum length such that the ancestors of every K"
have L initial states,R final states fulfilling thatLR = k and a central
common state. For the ancestors of evarye K™, the set ofL initial
states defines a left Welch subs@t € K and the set ofR final states
specifies a right Welch subs#t; C K. Take the whole set of left Welch
subsets associated with a reversible automadogs (k, 2, ¢), with them
we shall define a new diagram as follows:

e The nodes of the diagram are the left Welch subsetgl.in

e For two nodesV,, andW,,, there is a directed link labeled bye K
going fromW;, to W,, if for each elementj € W;, there is another
elementi € W;, such that {,i) =a in M,.

The previous diagram is the left Welch diagraiy, of the reversible
automatonA; in a similar way the right Welch diagram/y is defined:

e The nodes ofW; are the right Welch subsets iA.

e For two nodegVg, andWrg,, there is a directed link labeled bye K
going from Wy, to Wk, if for each elementj € Wy, there is another
elementi € Wg, such that the entryi(j) =a in M,.
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Welch diagrams provide a graph representation for the extensions
associated with the ancestors of a given word. Using the theory of definite
automata [14], Nasu proves four main properties of these diagrams:

Property 4 (Well-defined diagram)-or everya € K, every nodeW, in
W, has a single outgoing edge labeled by This is analogous fokV.

Property 5 (Strongly-connected diagramy)/, is strongly connected. This
is analogous folWg.

Property 6 (Mergible diagram)There existsp € Z* such that, for all
n > p, each path of length in W, begins from a unique state of the initial
left Welch subset. In this ca$¥; is p-mergible, this is analogous ol z.

Property 7 (Definite diagram)There existg € Z* such that, for al > ¢
and all w € K", all the paths labeled bw in W, have a single final left
Welch subset. Thud/; is g-definite, this is analogous foW ;.

In the following section we shall present a set of procedures for detecting
the valuesp and g for a reversible automaton such that the right Welch
diagram is p-mergible andg-definite. These procedures are based on
the matrix M, and p, g will be used for specifying another process for
calculating the inverse rule—* by means of the right Welch diagram.
Therefore the next results just discuss right Welch diagrams, but they are
also analogous for left Welch diagrams. For simplicity, in the following
sections every right Welch subset is representedvbsnd the right Welch
diagram is referred byVv.

4 PROCEDURES FOR OBTAINING THE INVERSE LOCAL RULE

For a reversible automatad = (k, 2, ¢), the right Welch diagranW has

a matrix representationdy, where the row and column indices are the
nodes of the diagram, and every entiy j) in My shows the label of

the edges from nodeé to nodej in W; the entry may have no element,
one, or several elements depending on the edges joining both nodes. Let
us define a procedure for obtaining the mathisyy using M,.

Procedure 1 (Transition fromM, to My)

1 For every rowa in M, and every staté € K, take the subsef € K
such that for eachc € C the entry (a,c) =b in M,. The distinct
subsetsC; are indexed by € Z+.

2 Form a new matrixAg where the row indices are the elementsof
and the column indices are the subsétsformed in the previous step.
Each entry inAg has the form(a, C;) and (a, C;) = b if (a,¢) = b in
M, for all ¢ € C;. Otherwise, there is no element in the enfay C;).
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3 For every subseC; and every staté € K, take the subseD C K
such that for alld € D, there exists € C; such that(c,d) = b in M,,.
The distinct subset®; are indexed byj € Z*.

4 Form a new matrixA; where the row indices are the subséls and
the column indices are the subsdly formed in the previous step.
Each entry inA; has the form(C;, D;) and(C;, D;) = b if (c,d) =b
in M, for c € C; and d € D;. Otherwise there is no element in the
entry (C;, D;).

5 If the subset<; are equal to the subset®; then stop the procedure
and A; = My, otherwise repeat Step 3 for the subsétsto form a
new matrix A,.

With Procedure 1 we can prove the following result:

Theorem 1 For a reversible automatol = (k, 2, ¢), if Procedure 1 yields
the sequence of matrice,...A,1 for p € Z* such thatA, 1 = My,
then W is p-mergible.

Proof: The previous procedure keeps the right extensions of the ancestors as
subsets of states. These extensions form a sequence of maigicesA ;1

for p € Z*, where My = A,41. The sequencelp...A, 1 can be used

to show how a particular state is connected with a given right Welch
subset; if the entryd, C;) = b in Ag and the entry (;, D;) = c in Ay,

then some of the ancestors of the wdrde K? begin froma € K and

finish with the states in the subs®t;. We can represent these ancestors
by the symbolic productipA;, where “symbolic” means that the product

(a, Ci)(Ci, D;) = bc and the entryd, D;) in AgA; is equal to the whole

list of distinct products d, C;)(C;, Dj) for all the subsets’;.

The symbolic producP = AgA;---A,_1A, yields a new matrix where
the row indices are the states &f and the column indices are the right
Welch subsets. Each entry i has the formd4, W) = B C K”, whereB
is the set of words iIrK? whose ancestors begin frome K and finish in
the right Welch subséV ¢ K. The same happens for all the wordsK.

Suppose that there existsb € K andu € K? such that for the same right
Welch subsetV;, we have thatd, W1) = B1, (b, W1) = B, BN B, =u
anda, b belong to the same right Welch subd&. By Property 5, there
exists another finite path labeled by K* in W going from W, to W5, in
this way the path labeled byv € K* goes froma, b € W, to the whole
set W5, hence the path labeled byu)* goes froma, b € W, to the whole
set W, any finite number of times, contradicting Property 6.

Therefore the automaton ig-mergible and every path of length in
W starts from a single state for each right Welch subset. O

Theorem 1 provides a procedure for detectipgs Z+ such that the
reversible automatotd is p-mergible. In the following, we shall explain



32 SECK, et al.

how the right Welch diagram is useful to knawe Z* such that the same
automaton is als@-definite. For each state € K, take fromMy a new
matrix M, where the row and column indices are the onesM6§ and
each entry i j) in M, is defined as follows:

1if (i, j)=a in My
@i, )) = )

0 in other case

Fora € K eachM, is the connectivity matrix ot:, hence we initially
have k connectivity matrices specified by, one for each state of
the automaton. We can define connectivity matrices for larger words, for
v € K* the matrixM, is produced by the matrix product of the connectivity
matrices corresponding with the states formingror instance ifti, b, c € K
then M, = M, M, M. . Using connectivity matrices, we shall prove the
following result.

Theorem 2 For a reversible automatod = (k, 2, ¢) with a right Welch
diagram represented byt , if there exists; € Z* such that for each word

v € K7 we have thatM, has a single non-zero column where each entry
is 1, then the automaton ig-definite.

Proof: Each matrixM, represents the paths W labeled bya € K. If
there existg; € Z* such thatM, has a single non-zero column with entries
equal to 1 for each € K4, then all the paths i'wW labeled byv begin
from all the nodes and they end into a unique nodaiof Therefore all
the paths of lengthy with the same label converge into the same node
and the automaton ig-definite. O

Theorem 2 gives a procedure based on matrix products for detecting
g € Z such that the automaton isdefinite.

Procedure 2 (evel g-definite)

1 Takeq =1

2 Taken = ¢ and for each wordv € K", form the connectivity matrix
M,.

3 If each connectivity matrixM, has a single non-zero column with
each entry equal td, then the automaton ig-definite and stop the
procedure. Otherwise, repeat step 2 taking ngw n + 1.

With these results, we can define a procedure for obtaining the inverse
local rule of the automaton. This procedure is based on the matrices used
to calculateMy from M,. Let Ag...A,;1 be the sequence of matrices
defining the transition fromM, into My. For 0<m < p, the column
indices of the matrix4,, are equal to the row indices of the matuix, 1,

SO0 we can get the symbolic produdt, A,,.1 which forms a matrix with
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the row indices ofA,, and the column indices aod,,.;. Each entry £, j)

in A,,A,,+1 is formed by all the words yielded by the concatenation of the
words in each entry of rowin A,, with all the words in the corresponding
entry in columnj of A,,.;. Thus each entry ii,, A,,.1 may have several
words.

The symbolic producti,, A,, 1 produces all the words whose ancestors
begin from the subsets of states represented by the row indicés tif the
subsets of states presented by the column indices,qfi. Therefore each
entry in the symbolic producP = ApA;--- A, shows the words (which
are also labeled paths W) going from particular states to right Welch
subsets. Using these symbolic products, we define the following procedure
for getting the inverse rule of the automaton:

Procedure 3 (nverse local rule)

1 Apply Procedures 1 and 2 to obtajnand g respectively such that the
automaton isp-mergible andy-definite. Take the value = max{p, g}.

2 Obtain the symbolic producN = ApA;1---A,, if ¢ > p then take
n = g — p and calculate also the symbolic produet= NB1B,--- B,
where B; = A,11 for 1 <i <n; in other caseP = N.

3 For each wordw € K™, take all the entries inP containing w; by
Properties 2 and 7w appears inL rows and in a single column.

4 For w,v € K™, take the right Welch subset representing the column
in P containingw and take the rows inP containing v, these rows
form a subset of states which is a left Welch subset.

5 By Property 3, the right Welch subsetwfand the left Welch subset of
have a single common statec K ; thus forwv € K2, ¢~ Y(wv) = a.

With the previous procedure we obtain the inverse local gié for a
reversible automaton, where the size of the inverse neighborhood is 2
and with a inverse centered evolution in every neighborhood.

Procedure 1 takes each state with every evolution in order to obtain the
subsetC;, hence the first iteration has complexity. The second iteration
takes all the subsetsS; with every right extension, because every may
have several elements and there are at méstubsets, this iteration has
complexityk?. Thus using the same analysis, iteratiohas complexity?”
and if the automaton ig-mergible, the procedure will have a complexity
of k% in the last iteration. Since is in relation withk, then the procedure
is exponential. The other procedures depend of Procedure 1, therefore all
the procedures have exponential complexity with regard of the number of
states.

Although this way of calculating the inverse local rule for a reversible
automaton is exponential, this procedure demonstrates that the necessary
information for obtaining the inverse behavior of the automaton is in any
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FIGURE 1
Matrix M, and one evolution of the automatoA = (4, 2, E BE E4444).

TABLE 2
Matrix My obtained by Procedure 1.
02 (13 (03 (1,2 0,2 (13 (03 (1.2
o[ O 1 (0202 13
Ag = 1 0 1 Ay = (1,3)| O 1 3 2
2 2 3 0,3)| O 1 3 2
3 3 2 1,2 | 0,2 1,3

of the ending parts of the ancestors, whether we choose the right side
or the left one, because we can specify analogous procedures for the left
Welch diagram.

5 ILLUSTRATIVE EXAMPLE

We shall illustrate the previous results using a reversible automaton
A= (4,2, ¢). We choose this example because this is not a trivial one
since the inverse local rule is larger than the original one, but its small
size allows to obtain a suitable presentation in the paper.

This type of automaton can be identified by a particular number base 16;
take the descendants from the neighborhoods from the neighborhoods 33
and 32, suppose that(33) = a andp(32) = b. Take nowx = (a *x 4) + b,
then x identifies the evolution of 33 and 32, continuing with the next
neighborhoods we have other 7 pairs of descendants, and for each pair
we can assign a number base 16. Thus a sequence of 8 hexadecimal
digits identifies the local rule. In the example of Figure 1 we have that
©(33)= 3 and¢(32) = 2, therefore ((4 3)+ 2) = 14 or E base 16.

This corresponds to automatod = (4, 2, E BE E4444), which rule’'s
matrix representation and an example of evolution are shown in Figure 1.
The pair diagram and its cycles are presented in Figure 2. We can see
that the only cycle is composed by the diagonal elements, therefore the
automaton is reversible.

Using Procedure 1, we obtain the matdity from M, in Table 2.
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Pair diagram Cycles

FIGURE 2
Cycles of the pair diagram for the automatoh= (4, 2, EBE E4444).

TABLE 3
Connectivity matrices obtained fromfyy .

W N P O
= = Ko
O 0o o ok
o o o olNn
O 0o o olw
=
|
W N R O
o o o o|lo
N e
o o o olNn
O 0o o olw

w N P O
R O O | O
O O O Ok
O O O Oo|N
O r R Olw
&
Il
w N P O
o O O Oo|o
O O K|k
O B O|N
O O O O|w

The procedure needs two steps to yiélly, therefore the automaton
is 1-mergible by Theorem 1. From the matrMy, we shall obtain the
connectivity matrix of each state (Table 3).

Matrices M, and M3 do not show the expected form described in
Theorem 2, hence we shall apply Procedure 2 to get the desired connectivity
matrices. For this reason, we calculate the products of the matrices in
Table 3 to yield the connectivity matrices of larger words. There are four
distinct types of connectivity matrices for the wordsAi?, these matrices
are presented in Table 4.

Procedure 2 shows that the automaton is 2-definite. We shall apply
now Procedure 3 for obtaining the inverse local rule. Since the automaton
is 1-mergible and 2-definite, we have to calculate the symbolic product
P = ApA; which is presented in Table 5.
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TABLE 4
Connectivity matricesM,, for w € K2,

Distinct connectivity matrices
3 01

01

2 2
0 1
0 1
0 1
0 1

O O O oOo|w

S

N

Il
w N P O

Moo= Bo Mo1=B1 Moz = Bo Moz = B1
Mio= Bo Mi1=B1 Mi2=B3 Mi3= B>
M= Bo Mz1=B1 M= By Mx3=B1
M3o= Bo M3z1=B1 Mz= B3 M33= B>

TABLE 5
Symbolic productP = ApAj.

©.2) 13 03 1.2

00 01

0 02 03 13 12
10 11
00 01

1 02 03 13 12
10 11
20 21

2 22 23 33 32
30 31
30 31

3 20 21 33 32
22 23

From Table 5 we can finally obtain the inverse local rule following steps
4 and 5 in Procedure 3, for this example the inverse local rule shall be
represented by a matrix (Table 6), where the row and column indices are
the words inkK? and each entryu{, v) = a € K in this matrix means that
o Y (wv) = a.

An example of the invertible evolution with a finite configuration for
this automaton is given in Figure 3.
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TABLE 6

(4,2, EBEE4444),

Inverse local rule for the automatoA

13 20 21 22 23 30 31 32 33

02 03 10 11 12

00 01

00
01

02

03

10
11

12
13
20
21

22

23
30
31

32

33
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[l ]

FIGURE 3

Evolution of A

(4,2, EBEE4444). The terminal cells in configurations 2 and 4 at both

sides are the same cell, we have duplicated these cells just for clarity.
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6 CONCLUDING REMARKS

The graph viewpoint and the matrix presentation have been useful for
analyzing and providing a set of computable procedures which calculate
and characterize the Welch diagrams of a reversible cellular automaton.
We use these diagrams for obtaining the inverse behavior.

However, these graphs and matrices have a significant size whether the
automaton has a small number of states or the inverse local rule is large.
Hence, such procedures are useful only for reversible one-dimensional
cellular automata with few states.

The main contribution of the procedures presented in this work is
that we just need the information at one side of the ancestors in a
reversible automaton for getting its inverse behavior. Therefore both sides
of the ancestors have all the needed information to produce the inverse
local rule.

A further work is to improve these procedures to obtain a polynomial
perfomance, and to apply an adaptation of them to other classes of cellular
automata, for instance to analyze the surjective case.

Another extension is to use more specific tools and results from graph
theory and symbolic dynamics in order to obtain their relation with the
theory of reversible cellular automata; with this we may establish deeper
properties for characterizing reversible automata.
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