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We study a binary-cell-state eight-cell neighborhood two-dimensional cellular automaton model
of a quasi-chemical system with a substrate and a reagent. Reactions are represented by semi-
totalistic transitions rules: every cell switches from state 0 to state 1 depending on if the sum
of neighbors in state 1 belongs to some specified interval, cell remains in state 1 if the sum of
neighbors in state 1 belong to another specified interval. We investigate space-time dynamics of
1296 automata, establish morphology-bases classification of the rules, explore precipitating and
excitatory cases and scrutinize collisions between mobile and stationary localizations (gliders,
cycle life and still-life compact patterns). We explore reaction—diffusion like patterns produced as
a result of collisions between localizations. Also, we propose a set of rules with complex behavior

called Life 2¢22.
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1.

Reaction—diffusion modeling and simulation, parti-
cularly in a sense of chemical computation and
development of wave-based chemical processors
[Adamatzky et al., 2005a], has become a hot topic
of computer science, physics and chemistry. Cellular
automata are very often used as fast-prototyping
tool for developing novel algorithms of wave-based
computing (see e.g. [Adamatzky, 2001]). A distinc-
tive feature of the prototyping is that it is made on
an intuitive, we can say interpretative rather then
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implementative, level, where states are interpreted
as chemical species and cell-state rules as quasi-
chemical reactions [Adamatzky et al., 2005b]. So we
do not have to follow reaction—diffusion dynamics to
simulate it in automata [Toffoli & Margolus, 1987]
but instead we should map all possible models of
cellular automata onto a space of quasi-chemical
reactions. The quest will bring not only original
designs of reaction—diffusion computers but also an
answer to the long-standing (from von Neumann’s
model of chemical automata [von Neumann, 1966])
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questions of how reaction—diffusion relates to self-
reproduction and universal computation, and a role
of primitive structures in shaping spatio-temporal
mosaic of emergent complex behavior [Langton,
1984; Wuensche, 2004]), better known as gliders,
mobile self-localizations or particles.

A well known variety of evolution rules sup-
port behavior similar to reaction and diffusion, see
[Packard & Wolfram, 1985] and [Maginer et al.,
1997], however, so far no one has undertaken a sys-
tematic analysis of “reaction—diffusion” rules, par-
ticularly in terms of constructing parametric space,
establishing conditions of pattern formation, and
studying how patterns may be formed in collision
with mobile self-localizations or gliders.!

In this paper, we consider the simplest pos-
sible model of a quasi-chemical system — two-
dimensional cellular automaton, where every cell
has eight neighbors and updates its states depend-
ing on whether the sum of neighbors in state 1
belongs to certain intervals. In Sec. 2 we study
automaton, where state 1 is an absorbing state,
so when in state 1 cell never leave the state; this
is a model of simple precipitation. Morphologi-
cal classification? of semi-totalistic cell-state tran-
sition rules is provided in Sec. 3, where we study
a model of diffusion and reaction in quasi-chemical
system. Section 4 specifies rules that support self-
localizations (compact patterns traveling undis-
turbed, like solitons in optical media [Adamatzky,
2001; Jakubowski et al., 2001] or gliders in Conway’s
Game of Life [Gardner, 1970]). Reaction-diffusion
patterns generated as a result of collisions between
localizations (gliders and cycle life) are analyzed
in Sec. 5, where we propose a set of rules able to
support complex behavior, called “Life 2¢22.” Yet
another class of automata, based on a particular
behavior of cells in state 1 is studied in Sec. 6, there
a cell in state 1 takes state 0 independent of states
of its neighbors. More ideas on reaction—diffusion
automata and plans for future studies are tackled
in Sec. 7.

2. Patterns of Precipitation

We study a two-dimensional (2D) cellular automa-
ton (CA), where every central cell z € Z x Z (where
Z is an integer set), has eight neighbors (Moore
neighborhood), so that u(z) = {y € Z : ¢ # y

and |r —y| < 1}, and takes two states, 0 and 1. Let
ol be a sum of cells in state 1 in neighborhood u(z)
of cell x at time step t. Every cell updates its state
by the rule:

L= 1,
0,
(1)

A cell in state 0 takes state 1 if the number of
its neighbors in state 1 belong to interval [0y, 62],
1 <60, <0, <8; once in state 1 a cell remains in
this state forever. The model represents a quasi-
chemical precipitating system, where 0 is a sub-
strate and 1 is a reagent, when reagent diffuses onto
the substrate it is bound to substrate, a kind of
precipitation occurs. We can call interval [01,62] a
precipitation interval. Examples of configurations
generated by CA cell transitions of which are gov-
erned by various values of 61 and 6y are shown in
Fig. 1.

For narrow precipitation intervals with small
lower boundaries, [1,1], [1,2], [2,2], structures
formed by precipitate, cells in state 1, resemble
intersection and overlapping branching tress (see
configurations marked [1,1], [1,2] and [2,2] in
Fig. 1). The complex structure of branching struc-
tures is produced because every cell in state 1 or two
neighboring cells in state one (in the initial configu-
ration) generate a multiply-branching trees of pre-
cipitate, see Figs. 2(a)-2(c).

Further increase of upper boundary, [1,3] and
[1,4], and lower boundary, [2,3], [2,4], [3,3] and
[3,4] leads to formation of Voronoi-like domains
around each cell that was in state 1 initially (see
more details about CA generation of Voronoi dia-
grams in [Adamatzky, 2001]). Edges of Voronoi dia~
grams (see white domains in configurations signed
by [1,3],[1,4],[2,3],[2,4],[3,3],[3,4] in Fig. 1, and
particularly configuration [3,4]) are represented by
narrow domains of cells in state 0). This happens
because at sites where fronts of precipitation (origi-
nating from different sources) approach each other,
cells in state 0, “squeezed” between the fronts, have
number of 1-state neighbors exceeding 65 and so
these cells do not take state 1 (Fig. 3).

When lower boundary of “precipitation”
interval [0, 6>] becomes more than 3, typical con-
figuration of CA developing from random initial
configuration is a population of mostly sparsely

if (z' =0 and o!, € [01,602]) or (2! = 1)

otherwise

'We used terminology of the automaton discovered by John Horton Conway — The Game of Life [Gardner, 1970].
2The full catalogue of nontrivial patterns is available at http: //uncomp.uwe.ac.uk /adamatzky /q2d1d2t1t2/appendix.pdf
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88
Fig. 1. Configurations of 2D 100 x 100 cells “precipitating” CA, developed from initial random configuration (with 10% of
cells in state 1) after 100 steps; each configuration is signed with two digits representing values of 61 and 6s.

(a) (b) () (d) ()

Configuration of 2D n x n = 20 x 20 cells “precipitating” CA developed from initial configuration where all sites
are in state 0 but the only center cell is in state 1. Configuration displayed at time step t = 7. Cells in state 1 are shown in
discs, in state 0 by dots. Initially, ¢ = 0, all cells but those indicated below are in state 0. (a) 01 = 02 = 1, mgl/zn/Q =1,
(b) 01 =

Fig. 2.

1,05 = 2, x%/Q’n,/Q =1,(c) 01 =65 =1, x%/27,n/2 =1 and x%/27,n/2_‘_1 =1,(d) 01 = 1,00 = 2, x%/27,n/2 =1 and
0 . 0 0
Tpjon/241 = b (e) 61 = 2,02 =3, Tjomy2 =1 and Ty om/241 = 1-
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Fig. 3.

(b)

Configuration of n x n = 40 x 40 CA recorded at step ¢t = 40, the automata started their development in configuration

where almost all cells were in state 0 but cells with coordinates (n/2,n/2), (n/2,n/2+1), (n/2+n/4,n/2), (n/24+n/4,n/2+1),
(n/2+n/4,n/24+1+n/4) and (n/24+n/4,n/2+1+n/4+ 1) were in state 1. (a) §; =1 and 03 = 3, (b) §; =2 and 63 = 3.

distributed states 1 (black pixels in Fig. 1). This
is because in sparse random initial configuration a
cell in state 1 is usually surrounded by neighbors
in state 0 and therefore initial random configura-
tion remains in general unchanged during automa-
ton development.

For every wvalue of intervals’ boundaries and
any initial condition the automaton eventually gets
trapped in a fixed point of evolution, where no cell
changes its state (because 1 is an “absorbing” cell
state, or a precipitate). To make things more attrac-
tive dynamically we can allow for “dissociation” of
reagent “1” from substrate “0”, the model is dis-
cussed in the following section.

3. Phenomenology of Diffusion and
Reaction

Let ol be a sum of cells in state 1 in neighborhood
u(x) of cell z at time step ¢, and 0 < 01 < 6 < 8
and 0 < 97 < 9 < 8. Every cell x updates its state
2! by the following rule:
1, if (2" =0 and ol € [0y,09]) or
ot = (zt =1 and ol € [01,82]) (2)
0, otherwise

Selecting particular values of intervals’ bound-
aries we change cell state transition rule, and

subsequently the development of space-time dyna-
mics in the automaton. In this paper, we specify the
form R(d1,09,601,62). The rule can be interpreted
as a simple discrete model of a quasi-chemical sys-
tem with substrate “0” and reagent “1”, and [0, 03]
is analogous to diffusion rate, or in association
between substrate and reagent, and [d1, d2] is anal-
ogous to a reaction rate, or as in other terms with
a degree of affinity between substrate and reagent.?

We analyzed patterns produced by each of 1296
rules, from initially random configuration (the same
random configurations were used for all rules) where
every cell was assigned state 1 with probability 0.3,
cell state transitions Eq. (2) for all possible values
of intervals’ boundaries. Several morphology-based
classes of rules are discovered.?

The rules which transform random initial con-
figuration to a uniform configuration of cells in state
0 are grouped in the E-class. For example, rules
R(33ab), a > 5, b > 5 (it is assumed that a < b,
a,b < 8); R(44ab), a,b > 4; R(4cab), a,b > 4,
¢ = 4,5. The interval boundaries of the rules are
so that initial 1-states do not spread to neighbor-
ing O-state sites, and cells in state 1 could not be
in this state for longer than a few time steps of
development. The class E represents a quasi-
chemical system with sub-threshold diffusion and
reaction rates.

3The model is a generalization of Conway’s Game of Life, where [01,602] and [d1, d2] are intervals of birth and survival; the

Game of Life rule can be written as R(2333) or 523/B33.

YYou can reproduce each CA with our OSX2DCASM system available from http: //uncomp.uwe.ac.uk/genaro/

OSXCASystems.html
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The second class — S-class — is comprised
of rules which almost did not change initially the
random configurations. Small clusters of 1-states
are formed but never spread for more than a few
cells, e.g. configurations generated by rules R(11ab),
a,b > 3 or R(22ab), a,b > 4. Diffusion rate is still
low for substantial patterns to form but reaction
rate is high enough to keep formed patterns stable.

The third simple class, D, comprised of rules
that generate solid (all almost solid) configurations,
where the whole lattice is filled with 1-states. For
example, the class includes rules R(d8a8), 1 < a <
4, d = 2,3 and R(d8a8), 1 < a < 3, d = 4,5; the
rule represent high reaction and diffusion rates.

L-class includes rules that generate fine
labyrinths of 1-states. Some exemplar configura-
tions are shown in Fig. 4. There are at least two dis-
tinctive types of structures: £1-labyrinths with walls
one cell sick [see e.g. Figs. 4(a) and 4(b)], and Lo-
labyrinths with walls few cells sick [see e.g. Figs. 4(c)
and 4(d)]. £ labyrinths are formed because dif-
fusion rate, interval [f7,05] is narrow enough to

l
=

il

allow only stripes of 1-states to grow and join each
other, and the one cell wide stripes are stabilized
by reaction rate, interval [d1,d2] allowing for only
cells surrounded by, e.g. one, two or three neigh-
bors in 1-state to persist. Decreasing reaction inter-
val, e.g. going from rule R(1312) to rule R(1322),
dramatically reduces the amount of free hanging
ends of stripes (where cell in state 1 has just one
neighbor, as in Fig. 4(a)) and therefore development
favors continuous (but possibly frequently turning)
stripes [see Fig. 4(b)]. Increasing upper boundary
of reaction interval [d1,02] leads to formation of
sick stripes, Lo-labyrinths, see e.g. Figs. 4(c) and
4(d). Formation of Lo-labyrinths may be attributed
to high degree of diffusion and relatively high rate
reactions compared to that in medium’s producing
L1-labyrinths.

With increase of both lower and upper bound-
aries of diffusion interval [61,02] we see formation
of irregularly oriented and often branching stripe-
like domains of 1-states, examples are shown in
Fig. 5. We group the rules generating such patterns

Fig. 4.

Examples of configurations generated by rules of L-class. (a) R(1312), (b) R(1322), (c¢) R(1616), (d) R(4617).
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to M-class. The strips become thinner with decrease
of diffusion rate, see transitions between configura-
tions (a) — (b) — (c) in Fig. 5, and they are trans-
formed to interconnected domains with increase of
diffusion rate and increase of lower boundary of
reaction interval [Fig. 5(d)].

Rules representing high diffusion rate (wide
interval [01,602]) and low reaction rate (narrow
[01,02]) generate configurations where domains of
mostly 0O-states with scattered 1-states compete
with domains of mostly 1-states with scattered O-
states (Fig. 6). The rules are grouped in P-class.

Configurations of irregularly distributed spots
(domains of fews cells in 1-state) are typically gener-
ated by rule in O-class. The spots may be connected
by thin filaments of 1-states. The rules represent
very low rate of diffusion (self-inhibiting diffusion)
and high reaction rate (Fig. 7).

Three more classes can be specified but now
based on computational functionality of develop-
ing configurations. Here, we follow a paradigm
of reaction—diffusion computing, where data are

Examples of configurations generated by rules of M-class. (a) R(1315), (b) R(1425), (c) R(2213), (d) R(2858).

represented by initial concentrations of reagents,
computation is implemented by spreading and
interacting patters (e.g. diffusion or excitation
waves), and the result is given by final (either
stationary or oscillating) distribution of reagents
(see details in [Adamatzky, 2001]). In automaton
classes studied in this paper, computationally func-
tional rules are morphologically indistinguishable
from “computationally useless” rules.

The first, computationally functional class G
consists of rules R(2¢22), where 2 < ¢ < 8.
The rules support mobile localizations, or gliders,
in CA development. By colliding gliders we can
implement any kind of logical operations, as well
studied in the field of collision-based computing,
see [Adamatzky, 2003]. Particulars of interaction
between localizations will be discussed in detail in
Sec. 4. Other examples of functionally complete —
collision-based — binary-state automata include
Conway’s Game of Life [Berlekamp et al., 1982],
HighLife (modification of Game of Life where 0 — 1
transition happens if there are either three or six
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Fig. 8. Partial construction of Voronoi diagram in CA governed by rules (b) R(1634), (c¢) R(1834), (d) R(4834), initial data
set represented by domains of six cells in 1-state is shown in (a).
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Fig. 9.

(Continued)

Constructing convex hull by CA rule R(4848), (a) a typical final configuration for initial random configuration where

every cell took state 1 with probability 0.3; (b) superposition of initial random configuration, gray pixels are cells in state 1,

and black domains are final configurations.

neighbors in state 1, and transition 1 — 1 if there
are two or three neighbors in state 1) [Bell, 1994].

A set of rules grouped in class V allows for par-
tial computation or approximation of a Voronoi dia-
gram — given a set of planar points compute such
domain for each point p of data set that any point
in the domain is closer to p than to any other point
of a given data set. Boundaries of the domains con-
stitute Voronoi diagram. See details of constructing
Voronoi diagram in chemical reaction—diffusion sys-
tems in [Adamatzky, 2001]. As you can see in Fig. 8
edges of Voronoi diagram can be represented either
by loci without reagent, i.e. domains of cells in state
0 [Figs. 8(c) and 8(d)], or by different types of tiling
[Fig. 8(b)].

Rules grouped in class C approximate discrete
convex hulls (see [Adamatzky, 1995] for formal
background) of connected subsets of cells being ini-
tially in 1-state, so an initially random configuration
of 1-state cells is transformed by the rules of G to a
set of discrete convex hulls of various sizes (Fig. 9).
The class includes rules R(4847) and R(4848).

4. Rules Supporting Gliders:
Life 2¢22

Analyzing space-time dynamics of the automata we
found a subset of rules that support a wide range
of stationary and mobile localizations like: gliders,
cycle life, still life and puffer trains.® The subset

5We use notations typical for Game of Life literature, see e.g. http://pentadecathlon.com/index.shtml.
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of evolution rules called Life 2¢22 is represented
as R(2c¢22), where ¢ takes values of 2 to 8, i.e.
R(2222),...,R(2822). They have very narrow inter-
vals of diffusion [07,62] = [2,2] and a wide range
of reaction parameters, 2 < §; < do < 8. We have
found that there is no difference in localizations gen-
erated by rules R(2722) and R(2822), so for these
two rules we consider only ¢ = 7.

The basic mobile localization is a glider period
one (Fig. 10) existing for all rules of Life 2¢22. All
gliders and puffer trains in Life 2¢22 travel in four
directions: south, north, east and west.

The basic stationary localizations include blink-
ers of period two and four, see Fig. 11. Smallest

t=0 t=1
n (]
] n
] n
] n
Fig. 10. Glider of period one.

t=0 t=1 t=2
| n |
[ ] [ ] [ ]
(a)
t:O t=1 t=2
[] [] []
[ ] u m = ] [ ]
H m H m =
m = H m =
u u [ 1L | n [ ]
[ ] [ ] [ ]
(b)
t=0 t=1 t=2 t=3 t=4
[ [ ] [ [
| |m n u |m n | |m
[] ] u [ ] L]

()

Fig. 11. Stationary localizations (cycle life) of: (a) and (b)
of period two, (c) period four.

Fig. 12. Still life configuration.

t=0 t=1 t=2

Fig. 13. Puffer train configuration.

still localization is a “still life” occupying 20 cells
(see Fig. 12), and a puffer train of period four (see
Fig. 13),% both structures exist for Life 2¢22 where
4 <c<8.

Figures 14 and 15 show the behavior of Life
2¢22, each automaton starts its development from a
random initial condition with low density (approx-
imately 0.01). In the opposite case, we found that
to observe interesting behavior of gliders it is better
to keep the initial density of 1-states between 0.85,
for 2 < ¢ <3, and 0.93, for 4 < ¢ < 5.

In Life 2¢22 we can observe the generation of
few gliders and blinkers, mainly when ¢ is smaller
and several catastrophes are initiated. Notably the
catastrophes induced by collision of gliders destroy
the fragile “ecosystem” of co-existing localizations.
This is the reason why some of the localizations
studied were never discovered before, because they
only exist during short periods of initial evolution
and extreme densities. Thus even in our morpholog-
ical classification, see Sec. 3, the glider-supporting
rules were grouped to M-class, renowned for
“unstructured”, chaotic-like, configurations.

SPuffer train was discovered by Adriana Menchaca and Miriam Mecate.
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R(2,6,2,2)

R(2,7,2,2)

Fig. 14. Random initial condition with low density, first con-
figuration for each Life 2¢22, ¢ = 2, 3,4, shows the develop-
ment of CA, 300x 300 cells, after 10 steps, gliders and blinkers
are easily detectable, the second configuration shows the final
state of the automaton.

5. Collision-Induced Pattern
Formation

It is well known that for certain initial conditions
some cell-state transition rules produce patterns
bearing striking resemblance to “living” reaction—
diffusion systems (even in this particular study

Fig. 15.

Random initial condition with low density, first
configuration for each Life 2¢22, ¢ = 5,6, 7, shows the devel-
opment of CA, 300 x 300 cells, after 10 steps, gliders and
blinkers are easily detectable, second configuration shows the
final state of the automaton.

we observed Turing-like structures [Turing, 1952;
Yang et al., 2004]), however so far there has
been no published results about the generation
of growing reaction—diffusion patterns by collisions
between gliders. This is discussed in the present
section.
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Before proceeding to findings of the systematic
analysis we would like to highlight basic interactions
between gliders.

In Life 2¢22 we found that when two gliders
collide — we mean head-on collision, even distance,
side shift one — they annihilate; this collision hap-
pens for all rules of R(2¢22), see Fig. 16. In other
cases, they produce a blinker see Fig. 17.7

If we grouped four gliders, each one in four
directions, then we have multiple collisions, the
results of which depend on values of ¢ as demon-
strated in Fig. 18. Another exercise adopted from
Game of Life studies is to arrange the line of 1-states
and analyze structures produced, in such a way we
can, e.g. see in rule R(2433) a circular growth initi-
ated by seven cells in state 1 [Wolfram, 2002].

In Fig. 19, we see that the initial configuration
of two cells in state 1 generates two gliders, trav-
eling in opposite directions, and also, for ¢ > 2 a
reaction—diffusion like pattern spreading all over the
lattice.

Exemplar outcomes of head-on odd-distance
nil-offset collision of gliders are shown in Fig. 20,
all reaction—diffusion patterns generated are highly
symmetric however the symmetry is hidden behind
quasi-irregularity of the patterns for ¢ = 2, 3.

Increasing the number of colliding gliders, see
in Fig. 21, makes no significant change in morphol-
ogy of patterns generated but affects symmetries
of the patterns. The collision in Fig. 21 is partic-
ularly interesting, because it makes an impression
that the glider initially traveling north continues its

t=0 t=1 t=2 t=3
L] L] n
- - L} L] -
n | LI |
n |} n L |}
n n |}
Fig. 16. Annihilation of gliders in collision with Life 2¢22.
t=0 t=1 t=2 t=3 t=4
Fig. 17. Producing a blinker to Life 2¢22.
initial condition
t=3,R(2,22,2) t=8,R(2,3,2,2) t=3, R(2,c,2,2)

Fig. 18.

Four gliders annihilate (¢ = 2), produce four blinkers (¢ = 4) and one still life (4 < ¢ <38).

"Collision producing blinker was discovered by Miriam Mecate and Adriana Menchaca. All binary collisions between gliders
are available from http://uncomp.uwe.ac.uk/genaro/diffusionLife/life_ 2¢22.html
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initial condition

R(2,3,2,2)
R(2’21212) 96 cells
7 generations
8 cells
R(2,4,2,2) R(2,5,2,2)
164 cells Ll 170 cells

R(2,6,2,2)
198 cells

R(2,7,2,2)
198 cells

Fig. 19.
also initiated but spreads more slowly than traveling gliders.

journey undisturbed (may be with some delay) but
gliders traveling east and west are both diverted
south.

Outcomes of glider collision with two blinkers
are shown in Fig. 22. For rule R(2222) the glider

R(2,2,2,2)
11652 cells

(a)

Fig. 20.

Initial configuration with two cells in state 1 produces two gliders, however for ¢ > 2 a reaction—diffusion pattern is

is multiplied, and the three gliders continue trav-
eling east, at the same time a disordered rhom-
boid pattern starts to grow. For ¢ = 3 two gliders
traveling north and south are formed, but the
growing reaction—diffusion pattern still remains

R(2,4,2,2)
21332 cells

(b)

Examples of patterns produced in collision of two gliders, head-on collision, odd distance between gliders, nil side

shifts. The configurations are recorded at 150th step to each Life 2¢22.
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R(2,5,2,2)
23220 cells

i.mnlllﬂ\HN“H“H“HM% =

{ ||||||\\H|“““““mm‘% =

R(2,6,2,2)
33324 cells

Fig. 20. (Continued).

R(2,2,2,2)
28748 cells

initial condition

R(2,4,2,2) . R(2,6,2,2)
52044 cells 70450 cells

(c) (d)

Fig. 21. Exemplar patterns generated in collision between three gliders, initial disposition of gliders is shown in (a), gliders
traveling south and north are also produced, they are followed by the growing reaction—diffusion pattern.
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initial condition

R(2,3,2,2)

R(2222) 7444 cells B
arell

6208 cells

R(2,6,2,2)

18358 cells

(d)

Fig. 22. Examples of collision of glider traveling east to two blinkers (a). Configurations that emerged as a result of the
collision are recorded at 125th step of CA development. The initial trajectory of the glider determines a periodic domain on
the western part of each configuration whereas positions of blinkers are somewhat responsible for a mixture between chaotic

and periodic domains in the eastern part of the growing pattern.

initial condition

R(2,4,2,2)
12512 cells

R(2,2,2,2) L
7207 cells :

R(2,6,2,2)
17630 cells

(d)

Fig. 23. Exemplar reaction—diffusion patterns produced by two associated gliders (like puffer train), configurations recorded

at time step 120.
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R(2,6,2,2)
151 generations
35838 cells

R(2,4,2,2)
148 generations
25643 cells

Fig. 24.
shown at the top of each subfigure.

chaotic-looking. The quasi-symmetry is broken and
no more gliders are generated as a result of
the collisions when ¢ > 2. The western part
of the growing pattern becomes a combination
of few domains of ordered O-1-state tiles, while
the eastern part either obeys labyrinthine struc-
ture (R(2422)) or labyrinthine domain with embed-
ded ordered domains (¢ > 4). The growing
reaction—diffusion patterns hold a memory of the
collision.

2999

R(2,2,2,2)
151 generations
14748 cells

(b)

Examples of patterns generated by glider compositions (puffer trains). Initial configuration of colliding gliders is

In Fig. 23 we can see a range of reaction—
diffusion patterns produced as an interaction of two
gliders traveling side-by-side to the west like puffer
train configuration. For rule R(2222) a flotilla of six
gliders traveling eastwards is generated. In configu-
ration generated by CA with rule R(2422) eastward
part of the diffusing wave-front is concave, which
is extremely unusual and had never been observed
before. For all rules of Life 2¢22 two initial gliders
continue their travel west undisturbed, they are just
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R(2.4,2.2)
175 generations
33464 cells

R(2,7,2,2)
175 generations
49678 cells

R(2,5,2,2)
175 generations
35156 cells

Fig. 25. Examples of patterns generated by glider compositions (puffer trains). Initial configuration of colliding gliders is
shown at the top of each subfigure.

R(2,5,2,2)
175 generations R(2,4,2,2)
27234 cells 175 generations R(2,52.2) .
23155 cells 175 generations
22762 cells

II;IIIIIII;IﬁlII;IIIIIII;IﬁlII;IIIIIII;IﬁlII;IIIIIII;Iﬁlll;lllllll;lﬁlll;lllllll;lﬁll

(a) (b) (c)

Fig. 26. Examples of patterns generated by (a) two gliders colliding with blinker, (b) one glider colliding with blinker, (¢) one
glider colliding with still life. Initial configuration of colliding gliders is shown at the top of each subfigure.
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followed by growing fronts of the reaction—diffusion
patterns.

Several examples of patterns generated by
mobile structures composed of several gliders, and
also between gliders, blinkers and still life are shown
in Figs. 24-26. Outcomes of proximal interaction
of several gliders are illustrated in Fig. 24(a), rules
R(2622) and R(2222). Figure 24(b) demonstrates
a pattern generated by an extension of glider row
(puffer train) where one puffer train is inserted
into the central part of another puffer train; the
configuration exhibits certain types of macro-cells
like domains produced due to interactions of sub-
patterns produced by two puffer trains traveling
in opposite directions. Collisions between gliders
and stationary patterns (blinkers and still lifes)
produce a combination of uniform, chaotic and
ordered domains in the same reaction—diffusion pat-
tern (bottom examples in Fig. 26).

6. Excitable Automata

We did not discuss yet another class of association-
dissociation CA, namely the situation when 1 <
01 < 69 < 8 but 61 = 6o = 9. In the framework
of association-dissociation rule, neither lower nor
upper boundaries of interval [d1, J2] can take value
nine because there are just eight neighbors in cell
neighborhood, however in this case cell in state 1
will always (unconditionally, independent of states
of its neighbors) take value 0. This is similar to an
excitable CA but without a refractory state, 1 is an
excited state, 0 is a resting state. For #; > 3 a ran-
dom initial configuration (with low ratio of 1-state
cells) will evolve to a configuration that is empty
or contains just few breathing or blinking domains.
For 6; < 3 the dynamics of automata resemble

g
12
4T

At LR
Sl

Fig. 27.

“classical” excitation dynamics of 2D CA with
interval (not threshold) excitation, studied in full
detail in [Adamatzky, 2001]. Example configura-
tions generated from random configuration are
shown in Fig. 27. For ¢; = 1 and 6, = 1, the
automaton exhibits filaments of excitation (e.g.
configuration 11 in Fig. 27), which are “trans-
formed” to a more conventional target (e.g. config-
uration 18 in Fig. 27), or spiral (e.g. configuration
28 in Fig. 27) waves.

Cell state rule determined by interval [0, 03] =
[22] allows for the existence of mobile self-
localizations, or gliders. Minimal glider consists
of four cells in state 1, and can move in four
directions, below is an example of glider traveling
west:

A minimal stationary localization is a blinker of two
cells in state 1:

Configurations of 2D 100 x 100 cells simply excitable CA, developed from initial random configuration (with 10%

of cells in state 1) after 100 steps; each configuration is signed by two digits representing values of 61 and 6.
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A minimal stimulus of “excitation” is two neigh-
boring cells in state 1. Head-on collisions between
gliders have various outcomes depending on odd-
even distance, or “phase-difference”, between col-
liding gliders and their side-shifts relative to each
(a) (b) other. Basic examples are shown in Figs. 28
and 29.

Two gliders colliding head on at even dis-
tance annihilate and produce quadruple of blinkers

Fig. 28. Outcomes of “head-on” collisions of gliders, ini-
tial position of gliders is shown on left configuration of each

subfigure; resultant configurations — on the right of each 3 . 1 )
subfigure. (a) Even distance between gliders, nil side-shift. [Fig. 28(‘3)]') Whﬂ.e those colliding at odd distance
(b) Odd distance between gliders, nil side-shift. are multiplied [Fig. 28(b)].
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Fig. 29. Outcomes of “head-on” collisions of gliders, initial position of gliders is shown on the left configuration of each
subfigure; resultant configurations — on the right of each subfigure — are recorded at step 50th, lattice size 120 x 120. (a) Odd
distance, side-shift 3. (b) Odd distance, side-shift 4. (c) Even distance, side-shift 3. (d) Even distance, side-shift 4. (e) Even
distance, side-shift 5.
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Situations with head-on shift-shifts collisions,
which do not result in just annihilation of glid-
ers, are demonstrated in Fig. 29; for side-shifts
more than 4 (for odd distance) or more than 5 (for
even distance) gliders do not interact. When gliders
are shifted relatively to each other, they produce
spreading patterns, led, in most cases by gliders
with extensive “tail-waves” attached. For situations
(b) and (e) in Fig. 29, the speed of growing patterns
is lower than speed of glider traveling, for other sit-
uations, both gliders and the growing patterns have
the same speed.

7. Discussion

We studied two-dimensional cellular automata with
binary cell states and eight cell neighborhoods,
where every cell in state 0 takes state 1 if the num-
ber of neighbors in state 1 belong to interval [01, 05],
and the cell in state 1 remains in state 1 if the
number of neighbors in state 1 belongs to interval
[01,02], 1 <6 <0 <8,1<6; <dp <8.

R

The model can be interpreted as reaction—
diffusion quasi-chemical system with substrate 0
and reagent 1, and [f,0s] is the interval of diffu-
sion and [d1, 2] is the interval of reaction. Exhaus-
tive analysis of configurations generated for all 1296
rules allowed us to draft a morphological classifica-
tion of the rules, and show that increasing the upper
boundary of diffusion interval usually lead CA to
make a transition from complex ordered spatio-
temporal behavior to disordered behavior. An
example is given in Fig. 30 where narrow intervals
of reaction, (a) and (b), demonstrate order, while
wider intervals of reaction, (c) and (d), disorder.

We have also studied precipitating and excit-
able automata, rules of which fell out of the defini-
tion of reaction—diffusion CA. We have shown that
in the precipitating automaton increasing the inter-
val of diffusion causes transition from disordered
to labyrinthine to uniform domains. While increas-
ing lower boundary of reaction interval causes tran-
sition from disordered and labyrinth/ordered to
sparse patterns.

Fig. 30.

(d)
Configurations generated by rules (a) R(1311), (b) R(1212), (c) R(1313), (d) R(1318).
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Amongst 1296 rules of cell-state transition of
association—dissociation CA we have selected a set
of rules — called Life 2¢22 — diffusion interval
is a singleton 2, and reaction interval has lower
boundary 2 and a larger upper boundary — that
support the existence of mobile traveling and sta-
tionary localizations — gliders, blinkers and still
lifes. In most cases, interaction between localiza-
tions leads to the formation of growing reaction—
diffusion patterns, the topology of which preserves
a memory of the collisions which initiated them. A
similar phenomenon was observed before in compu-
tational models [Adamatzky, 2004] and laboratory
experiments [De Lacy Costello & Adamatzky, 2005]
with subexcitable Belousov-Zhabotinsky chemical
medium. There compact traveling localizations,
wave-fragments, sometimes collided with each other
and merged into a wave-fragment growing “indefi-
nitely” till collision with boundaries of its chemical
reactor. The growing wave-fragments in excitable
chemical systems are memoryless, in general, it
is impossible to reconstruct positions of compact
wave-fragments which generated the growing pat-
tern in their collision. Therefore, a more detailed
study to Life 2¢22 is in progress.

We can also mention dynamical complements
(Fig. 31) of morphology-based classification. E-, V-
and C-classes are characterized by stable orbit (uni-
form behavior) with nill density of cells in state 1.
The periodic orbit is typical for classes S, L, O and
C: configurations there are usually dominated by
stationary localizations, still life and cycle life, pat-
terns not existing in one-dimensional automata. M-
class is a class of unstructure and unstable chaotic
density. Quasi-stable density is typical for P-class

periodic stable

quasi-periodic stable

unstable

all orbits

Fig. 31. Diagram of dynamical complements of morpholog-
ical classification.

where cellular space is dominated by quasi-periodic
regions. Class G is characterized by “indefinite”
density and complex behavior.

Also, regarding diffusion patterns formed by
several gliders in a row, or puffer train, we are con-
cerned — if a growth of reaction—diffusion patterns
generated can be nonstationary? Do stationary or
mobile generators of localizations, glider guns, exist
in our models of reaction—diffusion CA? Also, it will
be very important to find experimental analogies
of chemical systems equivalent to reaction—diffusion
automata, numerical simulations [Yang et al., 2004]
hint that morphological classes similar to that gen-
erated in our models can be produced in real-life
chemical systems.

Yet another possible practical benefit of the
discussed reaction—diffusion CA is in silicon imple-
mentation of reaction—diffusion processors. So far, a
majority of the LSI circuits, see [Chua, 1999; Suzuki
et al., 2006] employ either discretized (cellular neu-
ral networks) or numerical integration of partial dif-
ferential equations. However, as we demonstrated
in the paper, even wider range of reaction—diffusion
patterns can be generated in the studied CA. CA
based architectures of LSI circuits will offer greater
speed up, more precise tuning and manufacturing
simplicity.
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