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This paper exposes a procedure for modeling and solving linear systems using continuous-
valued cellular automata. The original part of this work consists on showing how the
cells in the automaton may contain both real values and operators for carrying out
numerical calculations and solve a desired problem. In this sense the automaton acts
as a program, where data and operators are mixed in the evolution space for obtaining
the correct calculations. As an example, Euler’s integration method is implemented in
the configuration space in order to achieve an approximated solution for a dynamical
system. Three examples showing linear behaviors are presented.
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1. Introduction

The study of dynamical systems is relevant in every theoretical and applied science,

where differential equations are the common framework used in this task. One

problem is that their representation may have a complicated analytic solution in

almost all the cases, even if serious simplifications are taken. Thus, the research

in numerical analysis has developed a huge set of results widely used thanks to

the availability of cheaper and more powerful computational equipment. The rising

of these resources has been applied as well for investigating new paradigms for
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studying dynamical systems, taking its atomic parts and characterizing their local

interactions.

Cellular automata represent one of the simplest approaches using this idea;

where space and time are discrete and local interactions are not complicated,1 pro-

viding a model which can be smoothly executed in a computer and offering an

easier analysis. One branch in this theory is to reproduce calculations mixing data

and operators in the evolution space. This interaction has been inspected for effec-

tuating unconventional computing;2–5 a relevant result by Cook6 and Wolfram,7

use an automaton with two states for reproduce an universal cyclic tag system.

The previous references show that cellular automata are an active field for

searching alternative computation prototypes. Nevertheless the existence of other

tools with deeper developments for realizing efficient computations, as parallel

paradigms based on shared or distributed memory;8,9 the interest in using cel-

lular automata is explained due to the simplicity of their elements. Although such

a feature implies to employ a large number of cells, the same facilitates their im-

plementation, where the current computers may manage millions of cells.

Based on the previous ideas, our goal is to show how numerical values and

simple logic and arithmetic operators are used in the cells of a cellular automaton for

performing procedures to solve dynamical systems. In this paper, Euler’s integration

method and classic linear systems are taken since they have well-known results, thus

it can be easily understood how the numerical algorithm is programed and verify

the correctness of the process; in this way the intention of the manuscript is more

academic than practical. The relevance of the work is to show how a discrete system

ruled by local interactions, is able to modeling a physical system without applying

any control or global variables for achieving synchronization or data validation; the

expected coordination is obtained by the set of local operations.

For achieving this objective, the differential equation representing the desired

system is taken, then we shall use a graphic representation of their solution by

block diagrams,10 which are a common tool for defining the set of numerical op-

erations to figure out the problem. The local interaction among their components

is characterized and performed by means of cells, so block diagrams are the bridge

between differential equations and cellular automata. Our definition of cellular au-

tomata has real continuous values for the cells, right-sided evolutions in the neigh-

borhoods and non-uniform neighborhood size. While this interpretation is different

from the classical one, their characteristics have been used before by other authors,

for instance11–13 apply real values in the states of the automaton for modeling

dynamical systems;14,15 take cellular automata with evolutions placed in one side

of the neighborhoods for examining topological and dynamical properties and16

treats cellular automata with non-uniform neighborhood size for simulating flexible

manufacturing systems.

The paper is organized as follows: Sec. 2 presents the characterization of linear

systems by differential equations and exposes block diagrams for showing a graphic

representation of their solutions. Section 3 describes the construction of cellular
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automata and depicts how the cells are able to model the elements of a block

diagram. Section 4 gives examples of linear systems resolved by cellular automata

and Sec. 5 provides the concluding remarks of the document.

2. Ordinary Differential Equations and Block Diagrams

To understand the dynamics of a real electrical or mechanical system, classical laws

of physics are utilized to create a mathematical model. A good approximation of

its behavior is achieved taking a system of concentrated parameters, conforming a

model of ordinary differential equations. An ordinary, linear differential equation of

order n with constant coefficients is described as:

a0y
(n) + a1y

(n−1) + a2y
(n−2) + · · · + any = g (1)

where {a0 6= 0, a1, a2, . . . , an} ⊂ R, g : I → R and y : J → R for I , J ⊆ R. On

dividing Eq. (1) by a0 we have that:

y(n) + a1y
(n−1) + a2y

(n−2) + · · · + any =
g

a0
= f (2)

Let us take L(y) = y(n) + a1y
(n−1) + a2y

(n−2) + · · · + any; so Eq. (2) becomes in

L(y) = f . For all x ∈ I , if f(x) = 0 then L(y) = 0 is a homogeneous equation, in

other case L(y) 6= 0 is non-homogeneous. A solution of L(y) = b(x) is a function

φ : J → R having n derivatives such that L(φ) = f ; if f is continuous on I , it is

possible to derive all the solutions of L(y) = f .17,18 Finding the solutions of the

homogeneous equation is an algebraic problem consisting on calculating the roots

of a polynomial; the solutions of the non-homogeneous equation are generated using

those of the corresponding homogeneous case and integrating taking into account

f . For n = 2, a well-known result17,18 is that for constant values a1 and a2 and:

L(y) = y′′ + a1y
′ + a2y = 0 , (3)

if r1, r2 are distinct roots of the characteristic polynomial p(r) = r2 + a1r + a2,

then φ1, φ2 defined by:

φ1(x) = er1x , φ2 = er2x (4)

are solutions of Eq. (3). If p has a repeated root r, then φ1, φ2 defined by:

φ1 = erx , φ2 = xerx (5)

are solutions of Eq. (3). Furthermore, the linear combination with constants coef-

ficients given by:

φ = c1φ1 + c2φ2 (6)

is a solution as well. For the non-homogeneous case:

L(y) = y′′ + a1y
′ + a2y 6= 0 (7)
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another result is that if f is continuous in I , Ψp is a particular solution of Eq. (7),

and Ψ is any other solution, then:

L(Ψ− Ψp) = L(Ψ) − L(Ψp) = 0 (8)

showing that Ψ − Ψp is a solution of Eq. (3).17,18 Therefore if φ1, φ2 are linearly

independent solutions of Eq. (3), there are unique constants c1, c2 such that:

Ψ − Ψp = c1φ1 + c2φ2 . (9)

Thus, every solution of Eq. (7) can be written as:

Ψ = Ψp + c1φ1 + c2φ2 (10)

and the problem of finding all the solutions of Eq. (7) is solved by calculating a

particular Ψp and two linearly independent solutions φ1, φ2 for Eq. (3). To yield a

particular solution of Eq. (7) we use the variation of constants to get Ψp:

Ψp(x) = φ1

∫
−φ2f(x)

W (φ1, φ2)
dx + φ2

∫
φ1f(x)

W (φ1, φ2)
dx , (11)

where W (φ1, φ2) is the Wronskian of φ1 and φ2. Linear systems represent a common

place for introducing the application of numerical algorithms, there exists a set of

widely-used algorithms used for solving differential equations, one standard tool is

Euler’s method. Most of the commercial software implementing these procedures

allows as well a graphic representation of their application by means of block dia-

grams. These diagrams are inspired on the work developed in 1930s for constructing

an analog computer to resolve differential equations following the terms of an ana-

log language. A block diagram is formed by simple elements, each one applying a

numerical operation, these elements are connected by directed edges describing a

data flow actualized as it crosses the different parts of the diagram. Eq. (2) can be

reformulated as follows:

y(n) = f − a1y
(n−1) − · · · − an−1y

′ − any . (12)

Equation (12) is graphically represented by a symbol describing the sum of n+1

signals in Fig. 1. To obtain the solution of the differential equation it is necessary

to solve the signals in function of y(n), these can be resolved integrating each one

f

-a1 y
(n-1)

:

:

-an-1 y'

-an y

�
y(n)

Fig. 1. Sum of the signals giving y(n).
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� � � �
y(n)

...
y(n-1) y'' y' y

-a1

-an-1

-an

f

..
.

Fig. 2. Numerical solution of Eq. (12) in a block diagram.

Fig. 3. Serial RC circuit.

of them, so we can add symbols to Fig. 2 presenting serial-connected integrators

and multiplicative constants for calculating the solution function of Eq. (12), and

returning the outputs of these blocks into the inputs of the sum block to get the

complete solution in a representative period of time.

Thus every element of the diagram produces a small step of the computation;

these blocks may be implemented in a computer language selecting a convenient

method and integration step in the case of the integrator block. The interconnection

of the blocks provides the corresponding flow of signals for getting the numerical

solution. Physical systems numerically modeled and generally simulated are RC

circuits, mass-spring and mass-spring-damper systems.

2.1. RC Circuit

A serial electric RC circuit is depicted in Fig. 3. v(t) is the excitation voltage, vR(t)

is the voltage lost in the resistance and vc(t) is the voltage lost in the capacitance.

Initially, the interrupter is in position 1 yielding that all the other initial conditions

are in 0. When the switch pass to position 2 in t = 0 the circuit is excited with
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source v(t). If the circuit has parameters C = 1000 µF , R = 250Ω and v(t) is a

unitary step function, then the model to predict the behavior of the voltage vc(t)

in the capacitor terminals is determined by:

d

dt
vc(t) +

1

RC
vc(t) =

1

RC
v(t) (13)

and the analytic solution is defined as:

vc(t) = 1 − e−4t . (14)

The block diagram describing the solution of the circuit is showed in Fig. 4.

2.2. Mass-spring system

A mass-spring system is reflected in Fig. 5. Where m is the mass, k is the elasticity

constant of the spring, f(t) is the force applied to the mass and y(t) is the mass shift.

Initially, the system is equilibrated and the initial conditions are 0, if the system is

excited by a unitary step function with parameters m = 1 kg and k = 1N/m, then

the model is determined by:

m
d2

dt2
y(t) + ky(t) = f(t) (15)

�
0.1

4


-1

v(t)
v(t)-v

c
(t) v′

c
(t) v

c
(t)

-v
c
(t)

Fig. 4. Block diagram for a serial RC circuit.

k

f(t)

y(t)
m

Fig. 5. Mass-spring system.
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and the analytic solution showing a simple harmonic oscillation of the mass is:

y(t) = 1 − cos(t) . (16)

The block diagram describing the solution of the system is showed in Fig. 6, we

have an integration step of 0.01 for the numerical calculation.

2.3. Mass-spring-damper system

A mass-spring-damper system is described in Fig. 7. The system is almost identi-

cal to the previous one, only there is an extra component b meaning the friction

coefficient of the damp. For an equilibrated system all the initial conditions are 0,

if the system is excited by a unitary step function with parameters m = 0.01 kg,

b = 0.02Ns/m and k = 1N/m, the model is defined in Eq. (17).

m
d2

dt2
y(t) + b

d

dt
y(t) + ky(t) = f(t) (17)

� 	
0.01

	
0.01

y″ y′

1

-1

y

-y

Fig. 6. Block diagram for a mass-spring system.

k

f(t)

y(t)
m

b

Fig. 7. Mass-spring-damper system.
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-100

	 

0.01



0.01

-2

100

y″ y′ y

1

-2y′

-100y

Fig. 8. Block diagram for a damped mass-spring system.

and the analytic solution showing an underdamped oscillation of the mass is:

y(t) = 1 − e−t cos(9.9498t)−
1

9.9498
e−t sin(9.9498t) . (18)

The block diagram describing the dynamical solution of the system is in Fig. 8

with an integration step of 0.01.

For every block diagram, the operation of each element depends on the previous

one, hence the interplay of the parts defines the global solution of the problem.

This is analogous for a cellular automaton, where the local interactions defines the

global behavior of the system. The following sections explains how to simulate the

essential objects of a block diagram by means of states in a cellular automaton.

3. Cellular Automata Modeling Dynamical Systems

Normally, cellular automata have been used for representing dynamical systems

finding an evolution rule which reflects the local behavior of the phenomenon.11

Following another tendency,2,19 we shall use one-dimensional cellular automata for

establishing numerical solutions mixing data and operators in the configurations.

A cellular automaton consists of a set of states K; the set of finite sequences of

states is described by K∗. For every w ∈ K∗, let nw be the number of states in w.

We shall index every state of w from left to right, starting from position 0, thus

wi is the state at position i mod nw and w[i···j] is the block of states from i to j.

The automaton has an initial condition or configuration c0 ∈ K∗; the superscript

indicates the current time and will be omitted when it is understood. There is

a set Φ ⊂ K∗ of neighborhoods where for every w ∈ Φ, there is a mapping or

evolution rule ϕ(w) = a ∈ K executing a set of logical and arithmetic operators

when the neighborhood appears in the current configuration. If ct
[i···j] = w ∈ Φ then

ct+1
j = ϕ(w); otherwise ct+1

j = ct
j .

Thus ϕ yields a new configuration ct+1; periodic boundary conditions are applied

to have complete neighborhoods for all the states in the configuration. We are using

neighborhoods with right-sided evolutions for producing a shift of the information
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from left to right during the dynamics of the automaton, holding the same behavior

that in a block diagram. For linear systems, block diagrams have three operators:

sums, integrators and products by constant values. They are executed using real

values, so the automaton will have real states described by v ∈ R and the previous

operations shall be implemented by action states which will have three properties:

val: The numerical value for realizing an operation; it can be real or integer.

min: The minimum value for controlling the periodic execution of an action.

max: The maximum value used with the minimum one for changing the numer-

ical value of another state, mostly applied for passing information.

Table 1 depicts the action states completing the operations of a block dia-

gram; when a state is not using a particular property, it will be indicated by NA

(Non-applicable). With these states, Eq. (19) performs an integration using Euler’s

method.

v1Pv2Gv3 . (19)

Table 1. Action states for simulating a block diagram.

Operation State val min max Neighborhood Evolution

Constant k ∈ Z k ∈ Z NA NA Several forms The state preserves its
value during the whole
evolution

Addition A NA NA NA v1v2Av3 v3 = v1 + v2

Copy C NA NA NA v1 · · · · · · · · ·
︸ ︷︷ ︸

n states

Cv2 v2 = v1

Sum S NA NA NA v1 · · ·
︸︷︷︸

n1

v2 · · · vj · · ·
︸︷︷︸

nj

Svj+1 vj+1 =
∑j

i=1 vi

Product P a ∈ R NA NA v1Pv2 v2 = v1 ∗ a

Sum gate G 0 − 1 i ∈ N j ∈ N v1Gv2 if (val = 1)
v2 = v2 + v1

val = 0
min = min+1

else
if(min < max)

min = min+1
else

min = 1,val = 1

Equal gate E 0 − 1 i ∈ N j ∈ N v1Ev2 if(val = 1)
v2 = v1

val = 0
min = min+1

else
if(min < max)

min = min+1
else

min = 1,val = 1
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In Eq. (19), state v2 keeps the product of v1 by an integration step P , this result

is accumulated in v3 by G after a predefined number of iterations; accumulating the

area of a small rectangle. With the action states, the next section utilizes distinct

cellular automata for solving the linear systems exposed in Sec. 2.

4. Examples

4.1. RC circuit

In order to modeling a RC circuit, we shall use a cellular automaton with K =

R∪{A, P1, P2, G}; the neighborhoods are defined in Table 2 using instances of the

states in Table 1 with v = 0 and k = 1.

With the neighborhoods in Table 2 we define the initial configuration c0 in

Fig. 9, it also shows how the parts of the block diagram in Fig. 4 are put into effect

by the states of c0.

Figure 10 presents 21 iterations of the automaton, in particular cell c6 contains

the numerical solution of the differential equation. The evolution shows how the

information goes from left to right and the feedback of the system is given after four

time steps. In the initial configuration, cell c5 is a sum-gate state; for obtaining a

right computation, the initial parameters in c0
5 are: val = 0, min = 3 and max = 4;

thus c1
5 holds that min = 4 and c2

5 has min = 1 and val = 1, letting pass the

information in the following time step. The same behavior is repeated every four

steps.

We can display the evolution of the system each fourth iteration to present a

more extended calculation, this process is in Fig. 11 which also graphs the dynamical

Table 2. Neighborhoods for model-
ing a RC circuit.

Φ ϕ

v1kAv2 v2 = k + v1

v1P1v2 v2 = 0.4 ∗ v1

v1P2v2 v2 = −1 ∗ v1

v1Gv2 v2 = v2 + v1 iff G = 1

k A v P
1

v G v P
2

v

�
4

�
0.1

-1

Fig. 9. Initial configuration for the automaton modeling a RC circuit.
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c
6

Fig. 10. Evolution of the automaton modeling a RC circuit.

Numerical values of cell c6 in time

Fig. 11. Numerical solution of a RC circuit.
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behavior of c6. This one presents an exponential behavior to 1, describing adequately

the solution of Eq. (14).

4.2. Mass-spring system

For this system we shall use almost the same cellular automaton, only the initial

configuration c0 is different (Fig. 12).

Figure 13 presents 21 iterations of the automaton, cell c10 contains the numerical

solution of the differential equation in every step. The automaton shows a feedback

of the system in seven time steps, where the initial parameters in c5 and c9 are

min = 6 and min = 4, respectively, both states have val = 0 and max = 7. Finally,

state P1 holds that val = 0.01.

Figure 14 depicts the system every seven iterations; due to the small integra-

tion step in P1, it is not practical to display the evolution showing a representative

behavior over a large period of time. Thereby we shall graph c10 after 21 000 iter-

ations, presenting only its value in every seven steps in Fig. 15, effectuating 3000

cycles for the numerical calculation of the mass-spring system.

Figure 15 presents the harmonic oscillation between 0 and 2 of c10, therefore

the automaton correctly describes the solution in Eq. (16).

�

�
0.01

-1

k A v P
1

v G v P
1

v G v P
2

v

�
0.01

Fig. 12. Initial configuration for the automaton modeling a mass-spring system.

c
10

Fig. 13. Evolution of the automaton modeling a mass-spring system.
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c
10

Fig. 14. Extended evolution of the automaton modeling a mass-spring system.

0

30000

2

Numerical value of cell c10 every 7 time steps

Fig. 15. Dynamical behavior of c10.

Table 3. Neighborhoods modeling a mass-spring-damper system.

Φ ϕ Φ ϕ

v1kAv2 v2 = k + v1 v1P1v2 v2 = 0.01 ∗ v1

v1Gv2 v2 = v2 + v1 iff G = 1 v1P2v2 v2 = −2 ∗ v1

v1Ev2 v2 = v1 iff E = 1 v1P3v2 v2 = −100 ∗ v1

v1 · · · · · ·
︸ ︷︷ ︸

4 cells

Cv2 v2 = v1 v1 · · · · · ·
︸ ︷︷ ︸

3 cells

v2Sv3 v3 = v1 + v2

4.3. Mass-spring-damper system

We shall use a cellular automaton with K = R ∪ {A, P1, P2, P3, G, C, S, E} and

the neighborhoods showed in Table 3; taking initially v = 0 and k = 100.

The initial configuration for this system is described in Fig. 16. We use state

C for retrieving the original result of each integrator, state S combines adequately

both results when it is needed and state E allows to pass information from left to

right for a correct feedback of the system.
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�

�
0.01

-2

�
0.01

k A v P
1

v G v P
1

v G v C v P
2

v P
3

vC v S v E v

-100

Fig. 16. Initial configuration for the automaton modeling a mass-spring-damper system.

c
10

Fig. 17. Evolution of the automaton modeling a mass-spring-damper system.

Figure 17 presents 21 iterations of the automaton, c10 contains the numerical

solution of the differential equation. This figure shows a complete cycle of the system

in seven steps; initially the sum-gate state in c5 has min = 6, c9 has min = 4 and

finally c21 has min = 2, all the three states have val = 0 and max = 7.

Figure 18 depicts the evolution of the system every seven time steps, as before,

it is not practical to display a representative evolution over a large period of time

by the small integration step in P1. We graph the value of c10 in 2100 iterations

of the system, presenting only the value in every seven steps in Fig. 19 for 300

cycles of the numerical solution. The graph presents an underdamped oscillation

between 0 and 2 of the values in c10, therefore the automaton gives the expected

approximation for the dynamics of Eq. (18) using Euler’s method.

5. Concluding Remarks

We have modeling linear dynamical systems using one-dimensional cellular au-

tomata. Taken results from preceding works, the original part of the constructions

presented in the paper is that real values can be combined with operations in the

evolution space in order to achieve the required numerical calculations. This ap-

proach has been easily implemented in a computer system, few cells are required for

simulating each one of the previous examples, hence the execution time needed for

obtaining numerical solutions is the same that the one used by a traditional com-

puter program using Euler’s method. The automata described in this manuscript
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c
10

Fig. 18. Extended evolution of the automaton modeling a mass-spring-damper system.

0

3000

2

Numerical value of cell c10 every 7 time steps

Fig. 19. Dynamical behavior of c10 modeling a mass-spring-damper system.

have resolved well-known linear systems by means of local interactions over a finite

set of elements taking discrete time steps, proving that they can be used for realiz-

ing different kinds of calculations without any need of a global control. Looking for

an enrichment of this technique, further improvements will be done to yield proce-

dures which can be applied for non-linear dynamical systems and be employed not

only in academic problems but in practical issues; for instance:

• Implementing more efficient integration methods as Heun or Runge-Kutta.

• Establishing a complete-structured methodology based on cellular automata for

modeling dynamical systems, in this sense the classical use of block diagrams

may be useful to formalize the basis of this paradigm.

• Investigate the relation between models based on cellular automata and other

alternative tools used for the same task, for instance bond graphs.
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