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Abstract. Through the years several methods have been used to
model organisms movement within an ecosystem modelled with cellular
automata, from simple algorithms that change cells state according to
some pre-defined heuristic, to diffusion algorithms based on the one
dimensional Navier - Stokes equation or lattice gases. In this work we
show a novel idea since the predator dynamics evolve through Particle
Swarm Optimization.

1 Introduction

Cellular Automata (CA) based models in ecology are abundant due to their
capacity to describe in great detail the spatial distribution of species in an
ecosystem. In [4], the spatial dynamics of a host-parasitoid system are studied.
In this work, a fraction of hosts and parasites move to colonize the eight
nearest neighbors of their origin cell, the different types of spatial dynamics
that are observed depend on the fraction of hosts and parasitoid that disperse
in each generation. Low rates of host dispersal lead to chaotic patterns. If the
rate of host dispersal is too low, and parasitoid dispersal rates are very high,
“crystal lattice” patterns may occur. Mid to hight rates of host dispersal lead
to spiral patterns.

In [9], an individual-oriented model is used to study the importance of prey
and predator mobility relative to an ecosystem’s stability. Antal and Droz [1]
used a two-dimensional square lattice model to study oscillations in prey and
predator populations, and their relation to the size of an ecosystem. Of course,
organisms have multiple reasons to move from one zone of their habitat to
another, whether to scape from predation, or to search the necessary resources
for survival. An example appears in [8], where predators migrate via lattice gas
interactions in order to complete their development to adulthood.

In this work we show a CA model of a theoretical population, where
predator dynamics evolve through Particle Swarm Optimization (PSO). Each
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season, predators search the best position in the lattice according to their own
experience and the collective knowledge of the swarm, using a fitness function
that assigns a quality level according to local prey density in each site of the
lattice. To the best of our knowledge, such approach has never been used to
model predator dynamics in an spacial model. The results show oscillations
typical of Lotka -Volterra systems, where for each increase in the size of the
population of predators, there is a decrease in the size of the population of
preys.

2 Background

2.1 Cellular Automata

CA are dynamical systems, discrete in time and space. They are adequate to
model systems that can be described in terms of a massive collection of objects,
known as cells, which interact locally and synchronously. The cells are located
on the d-dimensional euclidean lattice L ⊆ Z

d. The set of allowed states for each
cell is denoted by Q. Each cell changes its state synchronously at discrete time
steps according to a local transition function f : Qm → Q, where m is the size
of the d-dimensional neighborhood vector N defined as:

N = (n1, n2, n3, . . . , nm) (1)

where ni ∈ Z
d. Each ni specifies the relative locations of the neighbors of each

cell [6], in particular, cell n has coordinates (0, 0, . . . , 0) and neighbors n + ni

for i = 1, 2, . . . , m. A configuration of a d- dimensional cellular automaton is a
function:

c : Z
d → Q

that assigns a state to each cell. The state of cell n ∈ Z
d at time t is given by

ct(n), the set of all configurations is QZ
d

. The local transition function provokes
a global change in the configuration of the automata. Configuration c is changed
into configuration c′, where for all n ∈ Z

d:

c′ (n) = f [c(n + n1), c(n + n2), . . . , c(n + nm)] (2)

The transformation c �→ c′ is the global transition function of the cellular
automaton, defined as:

G : QZ
d → QZ

d

(3)

In a two dimensional cellular automaton the Moore neighborhood is often used,
such neighborhood can be generalized as the d-dimensional Md

r neighborhood
[6] defined as:

(ni1 , ni2 , . . . , nid
) ∈ Z

d where |nij | ≤ r for all j = 1, 2, . . . , d (4)
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2.2 Particle Swarm Optimization

Particle Swarm Optimization is a bio-inspired algorithm based on the collective
behavior of several groups of animals (flocks, fish schools, insect swarms, etc)
[5]. The objective of PSO is the efficient exploration of a solution space, each
individual in a ’community’ is conceptualized as a particle moving in the
hyperspace. Such particles have the capacity to ’remember’ the best position
they have been in the solution space, furthermore in the global version of PSO,
the best position found thus far is known to every particle of the swarm.

The position Xt
i of every particle in the swarm is updated in discrete time

steps according to the next equations:

V t+1
i = ωV t

i + k1r1

(
P t

i − Xt
i

)
+ k2r2

(
P t

g − Xt
i

)
(5)

Xt+1
i = Xt

i + V t+1
i (6)

where V t
i is the velocity vector at time t associated to particle i, the constants

k1 and k2 determine the balance between the experience of each individual (the
cognitive component) and the collective knowledge of the swarm (the social
component) respectively [2]. r1 ∈ [0, 1] and r2 ∈ [0, 1] are random variables
with a uniform distribution. The best position found by the particle i is denoted
by Pi, similarly the best position found by the swarm is denoted by Pg. The
term ω is known as inertia weight and serves as a control mechanism to favor
exploration of the solution space or exploitation of known good solutions. In [7]
it is suggested to start the algorithm with ω = 0.9 and linearly decrement it to
ω = 0.4, thus at the beginning of the algorithm exploration is favoured, and at
the end exploitation is enhanced. Figure 1 shows the position updating scheme
according to equations 5 and 6.

Fig. 1. Position updating scheme in PSO [11]



192 M. Mart́ınez-Molina et al.

3 Proposed Model

Our model describes a theoretical ecosystem, where a sessile prey and a predator
live. The individuals of the prey species compete locally with other members of
their own species (interspecific competence), prey reproduction is a local process.
In order to secure their own future, and that of their progeny, predators migrate
each season from zones low on resources (preys) to zones highly abundant in
food, just as in the case of preys, predators reproduce locally.

The space in which species live and interact is represented by the lattice
L ⊂ Z

2, periodic boundaries have been implemented, i.e. the cellular space takes
the form of a torus. The set of allowed states for each cell is:

Q = {0, 1, 2, 3} (7)

where:

• 0 is an empty cell.
• 1 is a cell inhabited by a prey.
• 2 is a cell inhabited by a predator.
• 3 is a cell containing a prey and a predator at the same time.

Both preys and predators, obey a life cycle that describes their dynamics in a
generation. Predator dynamics are modelled through the next rules:

1. Migration. During this stage, predators move within the cellular space
according to their own experience and the collective knowledge of the swarm.

2. Reproduction. Once the migration is complete, each predator produces
new individuals at random inside a Moore neighborhood of radius two.

3. Death. Predators in cells lacking a prey die by starvation.
4. Predation. Preys sharing a cell with a predator die due to predator action.

On the other hand, the life cycle of preys is modelled under the following
assumptions:

1. Intraspecific competence. Preys die with a probability proportional to the
number of individuals of the prey species surrounding them, this rule uses a
Moore neighborhood of radius 1. If ct(n) = 1, then the probability of death
(ct+1(n) = 0) is given by:

ρ (death) =
αx

m
(8)

where:
• α ∈ [0, 1] is the intraspecific competence factor, which determines the

intensity of competence exercised by preys in the neighborhood of cell
n.

• x is the number of preys in the neighborhood of cell n.
• m = |N |.

2. Reproduction. Like predators, preys spawn new individuals at random in a
Moore neighborhood of radius 2.
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Each stage in preys and predators dynamics occurs sequentially. They form a
cycle that defines one generation in their life, such cycle is:

1. Intraspecific Competence of preys.
2. Migration of predators.
3. Predators reproduction.
4. Predators death.
5. Predation
6. Prey reproduction.

As this cycle suggests, at each stage the rule applied to cells changes accordingly.

4 PSO as a Migration Algorithm

The main contribution in this work is to utilize a PSO algorithm as a mechanism
to model the migration of predators, that is, predators change their position
according to PSO. Some important differences in the use of PSO as a migration
algorithm and its use in numerical optimization are:

• Fitness. In numerical optimization, it is common to use the same function
to optimize as a mean to obtain a measure of a solution’s fitness. In the
proposed model, the solution space is the lattice of the CA, so each cell
represents a candidate solution to the problem of finding the necessary
resources for survival and procreation. Since the landscape of an ecosystem
changes continuously, it is impossible to speak of an absolute best cell,
instead each predator moves to the known “good” enough zones and
exploits them. Once depleted, predators migrate to search for new zones for
feeding and procreation, so instead of aiming for a global optima, predators
exploit known local optima.

• Solution space. As stated before, the lattice takes the form of a torus and
represents the solution space in which each particle of the swarm moves.
Thus the movement of a particle can take a predator from one edge of the
lattice to the other, this favours exploration.

• Swarm size. In our model each particle is also a predator, in consequence,
they can die, and they can reproduce, this changes the size of the swarm in
each generation.

Since the model is discrete in space, the update of a particle’s position simply
determines the location to which the particle moves to. Consequently the cell
from which the predator initiates its migration could go through the following
state changes:

ct(n) = 2 → ct+1(n) = 0

ct(n) = 3 → ct+1(n) = 1
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Similarly, the cell in which the predator ends its migration could experience the
next state transitions:

ct(n) = 0 → ct+1(n) = 2

ct(n) = 1 → ct+1(n) = 3

As a measure of a particle’s fitness, we use prey density in the neighborhood N
of each cell, thus, a cell with more preys in its neighborhood is a better location
than a cell with less preys in its neighborhood.

4.1 Migration Process

As stated in section 3, migration takes place after the competence of preys. At
the beginning of each migration, particles determine the fitness of their current
position (by measuring prey density in its neighborhood), and set their best
known position. Using this information, the best known position of the swarm
is set. After this initialization step, migration proceeds as follows:

1. The velocity vector of each particle is updated according to equation 5, the
magnitude of which depends on the values taken by parameters ω, k1, k2, r1

and r2.
2. Each particle moves to its new position by adding the vector V t+1

i to its
current position Xt

i .
3. The new neighborhood is explored and if necessary, both the best known

position of each particle P t
i , and the best position of the swarm (P t

g) are
updated.

4. The value of the inertia weight ω is adjusted.

This process is repeated 5 times, to ensure a good search in the proximity of
the zones known by the swarm and by each individual particle. Figure 2 shows
the migration of a swarm of 3 particles through PSO. The states of each cell
are shown with the next color code:

• Black: empty cell - state 0
• Light gray: prey - state 1
• Dark gray: predator - state 2
• White: cell inhabited by a prey and a predator at the same time.

Figure 2a shows initial conditions, of the 3 individuals, the one located at the
bottom - right is the one with the best fitness, so the other two will move in
that direction (Figures 2b and 2c). When predators end their migration, they
reproduce, so by migrating to zones with a high prey density, not only they have
a better chance of survival, but their offspring too.
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(a) Initial conditions (b) First iteration

(c) Second iteration (d) Reproduction

Fig. 2. Migration through PSO

5 Comparison with Lotka - Volterra Systems

The growth of a population in the absence of predators and without the effects
of intraspecific competence can be modeled through the differential equation [3]:

dZ

dt
= γZ (9)

where:

• Z is the size of the population.
• γ is the population’s rate of growth.

However, when predation is taken into account, the size of the population is
affected proportionally to the number of predator-prey encounters, which depend
on the size of the populations of preys (Z) and predators (Y ). Since predators
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are not perfect consumers, the actual number of dead preys depends on the
efficiency of the predator. Let a be the rate at which predators attack preys,
thus the rate of consumption is proportional to aZY , and the growth of the
population is given by:

dZ

dt
= γZ − aZY (10)

Equation 10 is known as the Lotka-Volterra prey equation. In the absence of
preys, the population of predators decay exponentially according to:

dY

dt
= −sY (11)

where s is the predator mortality rate. This is counteracted by predator birth,
the rate of which depend on only two things: the rate at which food is consumed,
aZY , and the predator’s efficiency h, predator birth rate is haZY , thus:

dY

dt
= haZY − sY (12)

Equation 12 is known as the Lotka-Volterra predator equation. Figure 3 shows
the dynamics of an ecosystem ruled by equations 10 and 12.

Fig. 3. Lotka - Volterra prey - predator dynamics

The Lotka-Volterra equations show periodic oscillations in predator and
prey populations. This is understandable given the next reasoning: when there
is an abundant number of preys, the food consumption by predators increases,
and thus the number of predators grows. Due to this fact, the number of prey
diminishes, and so does the food available to predators, which increase
predator mortality. The death of predators allows a new increase in the
population of preys, and the process begins anew. An excellent review of lattice
based models that give new perspectives on the study of oscillatory behavior in
natural populations appears in [10].

It is possible to simulate the behavior of Lotka-Volterra equations through
the proposed model, most of the parameters of these equations are indirectly
taken into account in such model, e. g., predator efficiency depends on whether
predators have a successful migration or not. To simulate the behavior of
equations 10 and 12, the next parameters are used.
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Fig. 4. Prey - predator dynamics through PSO in a CA

• Size of the lattice: 50× 50 = 2500 cells.
• Initial prey percentage: 30%
• Intraspecific competence factor: α = 0.3. If this parameter is too high, most

of the ecosystem will be composed of small “patches” of preys separated
by void zones, in consequence only a fraction of predators will survive the
migration.

• Mean offspring of each prey: 3 individuals.
• Swarm’s initial size: 3 particles.
• Mean offspring of each predator: 5 individuals. A high predator reproductive

rate would lead to over-exploitation of resources, in consequence there is a
chance that predators will go extinct.

• k1 = 2.0 and k2 = 2.0.
• Initial inertia weight ω = 0.9 and Final inertia weight ω = 0.4
• |Vmax| = lattice width

3

Figure 4 shows the dynamics of the proposed model, oscillations obeying the
abundance cycles of prey and predators are shown. Figure 5a shows a swarm
about to begin a migration, after feeding on preys (Figure 5b), there is a wide
empty zone where most of the cells have a fitness equal to zero. In order to
survive, predators move to “better” zones. In Figure 5c most of the swarm has
moved away from the empty zone (differences in the distribution of prey are
due to the process of competence and reproduction of the past iteration) to
zones with a higher density of preys. The migration of predators allows the
colonization of the previously predated zone, meanwhile recently attacked zones
will be reflected in a decrease in the population of preys (Figure 5d).

5.1 Extinction

A small population of predators with a high reproductive capacity might lead
to over-exploitation of resources (Figure 6a). Figure 6d shows the results of a
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(a) Initial conditions (b) First iteration

(c) Second iteration (d) Reproduction

Fig. 5. Spatial dynamics in the proposed model

simulation where each predator has a mean offspring of 15 individuals. As the
size of the swarm grows (Figure 6b), bigger patches of preys are destroyed, and
eventually migration becomes too difficult for most of the predators (Figure 6c).
Each passing generation, the number of surviving predators decreases, until the
whole population becomes extinct.

5.2 Discussion

There are other experiments that are worth discussing. It is possible to adjust
the range of local search by altering the value of the inertia weight ω. By setting
“high” initial and final values for this parameter, it is possible to increase the
radius of local search, particles explore a wider area in the vicinity of known
good zones. In consequence, most particles become disperse, and if resources are
abundant, a higher predation efficiency is achieved; but if resources are sparse,
the search will lead them to zones devoid of resources, and most of them will
die. On the other hand, “smaller” values for the inertia weight will produce a
very compact swarm specialized in local exploitation of resources.
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(a) Initial conditions (b) Population growth (c) Over-exploitation

(d) Extinction dynamics

Fig. 6. Predators extinction

It is necessary to determine the relation between the size of the lattice, and the
long term dynamics of the model. Other works [12] [1], have reported oscillations
of the Lotka-Volterra type only when the size of an ecosystem is “large enough”.

6 Conclusions and Future Work

We have presented a CA based model of a theoretical ecosystem where predators
migrate through PSO in order to find resources. Here we have presented the
simplest implementation of PSO, yet the results are promising, it is certainly
possible to establish some other fitness measures, thus it would be possible for
organisms to move according to some other factors, i.e. temperature, pollution,
chemical factors, etc. Of course, it is necessary to analyse the full dynamics
of the model, in order to establish its strengths and weaknesses. A substantial
improvement of the model would be the implementation of the local PSO, this
will allow individuals to react to the information received from local members
of the swarm in a finite neighborhood, thus allowing a more realistic modeling,
where individuals only have access to the information of their nearest neighbors.
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