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1 CELLULAR AUTOMATA AND WOLFRAM’S CLASSES

The classification and identification of cellular automata (CA) has become
a central focus of research in the field. In [122], Stephen Wolfram presented
his now well-known classes. Wolfram’s analysis included a thorough study of
one-dimensional (1D) CA, order (k = 2, r = 2) (where k ∈ Z+ is the cardi-
nality of the finite alphabet and r ∈ Z+ the number of neighbours), and also
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found the same classes of behaviour in other CA rule spaces. This allowed
Wolfram to generalise his classification to all sorts of systems in [128].

An Elementary Cellular Automaton (ECA) is a finite automaton defined
in a 1D array. The automaton assumes two states, and updates its state in
discrete time according to its own state and the state of its two closest neigh-
bours, all cells updating their states synchronously.

Wolfram’s classes can be characterised as follows:

� Class I. CA evolving to a homogeneous state
� Class II. CA evolving periodically
� Class III. CA evolving chaotically
� Class IV. Includes all previous cases, known as a class of complex rules

Otherwise explained, in the case of a given CA,:

� If the evolution is dominated by a unique state of its alphabet for any
random initial condition, then it belongs to Class I.

� If the evolution is dominated by blocks of cells which are periodically
repeated for any random initial condition, then it belongs to Class II.

� If for a long time and for any random initial condition, the evolution is
dominated by sets of cells without any defined pattern, then it belongs
to Class III.

� If the evolution is dominated by non-trivial structures emerging and
travelling along the evolution space where uniform, periodic, or chaotic
regions can coexist with these structures, then it belongs to Class IV.
This class is frequently tagged: complex behaviour, complexity dynam-
ics, or simply complex.

Figure 1 illustrates Wolfram’s classes, focusing on a specific ECA evolu-
tion rule (following Wolfram’s notation for ECA [121]). All evolutions begin
with the same random initial condition. Thus, Figure 1a displays ECA Rule
32 converging quickly to a homogeneous state, Class I. Figure 1b displays
blocks of cells in state one which evolve periodically showing a leftward
shift, Class II. Figure 1c displays a typical chaotic evolution, where no pattern
can be recognised or any limit point identified, Class III. Finally, Figure 1d
displays the so called complex class or Class IV. Here we see non-trivial pat-
terns emerging in the evolution space. Such patterns possess a defined form
and travel along the evolution space. They interact (collide), giving rise to
interesting reactions such as annihilations, fusions, solitons and reflections,
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(a) (b)
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FIGURE 1
Wolfram’s classes represented by ECA rules: (a) Class I - ECA Rule 32, (b) Class II - ECA
Rule 10, (c) Class III - ECA Rule 126, (d) Class IV - ECA Rule 110. We have the same initial
condition in all these cases, with a density of 50% for state 0 (white dots) and state 1 (black
dots). The evolution space begins with a ring of 358 cells for 344 generations.

or they produce new structures. These patterns are referred to as gliders in the
CA literature (‘glider’ is a widely accepted concept popularised by John Con-
way through his well-known additive 2D CA, the Game of Life (GoL) [36]).
In Class IV CA we see regions with periodic evolutions and chaos, and most
frequently in complex rules the background is dominated by stable states,
such as in GoL. In such cases—and this is particularly true of the complex
ECA Rule 110–the CA can evolve with a periodic background (called ether)
where these gliders emerge and live. Gliders in GoL and other CAs such as
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the 2D Brian’s Brain CA [114] caught the attention of Christopher Langton,
spurring the development of the field of Artificial Life (AL) [56, 57].

Since the publication of the paper “Universality and complexity in cellu-
lar automata” in 1984 [122], such classifications have been a much studied
and much disputed subject. Wolfram cited several ECA rules as representa-
tives of each class. Despite commenting that (page 31): k = 2, r = 1 cellu-
lar automata are too simple to support universal computation, in his book
“Cellular Automata and Complexity” [126]. ECA Rule 110 was granted its
own appendix (Table 15, Structures in Rule 110, pages 575–577). It con-
tains specimens of evolutions, including a list of thirteen gliders compiled
by Doug Lind, and also presents the conjecture that the rule could be uni-
versal. Wolfram writes: One may speculate that the behaviour of Rule 110 is
sophisticated enough to support universal computation.

An interesting paper written by Karel Culik II and Sheng Yu titled “Unde-
cidability of CA Classification Schemes” [28,109] discussed the properties of
such classes, concluding that: it is undecidable to which class a given cellular
automaton belongs (page 177). Indeed, in 1984 Wolfram [122] commented
(page 1): The fourth class is probably capable of universal computation, so
that properties of its infinite time behaviour are undecidable. Actually, we
can see that no effective algorithm exists that is capable of deciding whether
a CA is complex or universal, and so far only a few discovered (as opposed
to constructed) cellular automata have been proven to be capable of univer-
sal computation (notably Wolfram’s Rule 110 and Conway’s Game of Life).
However some techniques offer suitable approximations for finding certain
sets of complex, though not necessarily universal rules (though under Wol-
fram’s PCE they would be, c.f. Section 4).

In “Local structure theory for cellular automata” [44] Howard Gutowitz
has developed a statistical analysis. An interesting schematic diagram con-
ceptualising the umbral of classes of CA was offered by Wentian Li and
Norman Packard in “The Structure of the Elementary Cellular Automata
Rule Space” [60]. Pattern recognition and classification has been examined in
“Toward the classification of the patterns generated by one-dimensional cel-
lular automata” [13]. An extended analysis by Andrew Adamatzky under the
heading “Identification of Cellular Automata” in [2] considered the problem
of how, given a sequence of configurations of an unknown cellular automa-
ton, one may reconstruct its evolution rules. A recent special issue dedicated
to this problem focuses on some theoretical and practical results.1 Klaus Sut-
ner has discussed this classification and also the principle of computational

1Special issue “Identification of Cellular Automata”, Journal of Cellular Automata 2(1), 1–102,
2007. http://www.oldcitypublishing.com/JCA/JCAcontents/JCAv2n1contents.html
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equivalence in “Classification of Cellular Automata” [111], with an emphasis
on Class IV or computable CA. An interesting approach involving an additive
2D CA was described in David Eppstein’s classification scheme [32]2.

We will discuss two practical and two theoretical studies that distinguish
such classes and explore some properties of computing CA rules. Among the
topics we want to explore is the feasibility of using extended analog comput-
ers (EAC) [85] for CA construction, in order to obtain unconventional com-
puting models [3, 4]. In this classification, Class IV is of particular interest
because the rules of the class present non-trivial behaviour, with a rich diver-
sity of patterns emerging, and non-trivial interactions between gliders, plus
mobile localizations, particles, or fragments of waves. This feature was useful
in implementing a register machine in GoL [17] to determine its universality.
First we survey some of the approximations that allow the identification of
complex properties of CA and other systems.

1.1 Mean field approximation
Mean field theory is a well-known technique for discovering the statistical
properties of CA without analysing the evolution space of individual rules.
It has been used extensively by Gutowitz in [46]. The method assumes that
states in � are independent and do not correlate with each other in the local
function ϕ. Thus we can study probabilities of states in a neighbourhood in
terms of the probability of a single state (the state in which the neighbourhood
evolves), and the probability of a neighbourhood would be the product of the
probabilities of each cell in it.

Harold V. McIntosh in [76] presents an explanation of Wolfram’s classes
using a mixture of probability theory and de Bruijn diagrams3, resulting in a
classification based on the mean field theory curve:

� Class I: monotonic, entirely on one side of diagonal;
� Class II: horizontal tangency, never reaches diagonal;
� Class IV: horizontal plus diagonal tangency, no crossing;
� Class III: no tangencies, curve crosses diagonal.

2For a discussion see Tim Tyler’s CA FAQ at http://cafaq.com/classify/index.php, and more recently,
a compression-based technique inspired by algorithmic information theory has been advanced [134]
that offers a powerful method for identifying complex CA and other complex systems

3The de Bruijn diagrams have been culled from Masakazu Nasu’s 1978 work on tessellation
automata [97]. Wolfram himself has explored some of this in [123], later thoroughly analysed by
McIntosh [77, 82], Sutner [110], Burton Voorhes [116, 117], and, particularly, exploited to calculate
reversible 1D CA using de Bruijn diagrams derived from the Welch diagrams by Seck-Tuoh-Mora
in [104, 106]
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For the one-dimensional case, all neighbourhoods are considered, as fol-
lows:

pt+1 =
k2r+1−1∑

j=0

ϕ j (X )pv
t (1 − pt )

n−v (1)

such that j indexes every neighbourhood, X are cells xi−r , . . . , xi , . . . , xi+r ,
n is the number of cells in every neighbourhood, v indicates how often state
‘1’ occurs in X , n − v shows how often state ‘0’ occurs in the neighbourhood
X , pt is the probability of a cell being in state ‘1’, and qt is the probability
of a cell being in state ‘0’; i.e., q = 1 − p. For mean field theory in other
lattices and dimensions, please consult [45, 47].

1.2 Basins of attraction approximation
Andrew Wuensche, together with Mike Lesser, published a landmark book
entitled “The Global Dynamics of Cellular Automata” in 1992 [119] which
contained a very extended analysis of attractors in ECA. Wolfram himself had
explored part of these cycles in “Random Sequence Generation by Cellular
Automata” [124], as had McIntosh in “One Dimensional Cellular Automata”
[82]. Notably, Stuart Kauffman in his book “The Origins of Order: Self-
Organization and Selection in Evolution” [55] applies basins of attraction
to sample random Boolean networks (RBN) in order to illustrate his idea that
RBN constitute a model of the gene regulatory network, and that cell types
are attractors. The best description of such an analysis is to be found in [131].

A basin (of attraction) field of a finite CA is the set of basins of attraction
into which all possible states and trajectories will be organized by the local
function ϕ. The topology of a single basin of attraction may be represented
by a diagram, the state transition graph. Thus the set of graphs composing
the field specifies the global behaviour of the system [119].

Generally a basin can also recognize CA with chaotic or complex
behaviour using prior results on attractors [119]. Thus, Wuensche says that
Wolfram’s classes can be represented as a basin classification [119], as
follows:

� Class I: very short transients, mainly point attractors (but possibly also
periodic attractors), very high in-degree, very high leaf density (very
ordered dynamics);

� Class II: very short transients, mainly short periodic attractors (but also
point attractors), high in-degree, very high leaf density;

� Class IV: moderate transients, moderate-length periodic attractors,
moderate in-degree, very moderate leaf density (possibly complex
dynamics);
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� Class III: very long transients, very long periodic attractors, low in-
degree, low leaf density (chaotic dynamics).

1.3 Compressibility approximation
More recently, a compression-based classification of CA (and other systems)
was proposed in [134], based on concepts from algorithmic complexity. The
technique is based on the notion of asymptotic behaviour, and unlike the
mean field theory technique, it analyses the statistical properties of CA by
looking at the evolution space of individual rules. The method produced the
following variation of Wolfram’s classification [135].

� Class I: highly compressible evolutions for any number of steps;
� Class II: highly compressible evolutions for any number of steps;
� Class III: the lengths of compressed evolutions asymptotically converge

to the uncompressed evolution lengths;
� Class IV: the lengths of compressed evolutions asymptotically converge

to the uncompressed evolution lengths.

The first problem we face is that the four classes seem to give way to two
(Classes I and II and Classes III and IV are grouped). We will briefly see
how algorithmic information theory helps to separate them again, using the
concept of asymptotic behaviour advanced in [134, 136].

The investigation in [134] provides one of several ways to address the crit-
icisms directed at Wolfram’s original classification. In the experiments that
led Wolfram to propose his classification he started the systems with a “ran-
dom” initial configuration as a way to sample the behaviour of a system and
circumvent the problem of having to choose a particular initial configuration
to map a system to its possible class of behaviour. The problem resides in
the fact that a CA, like any other dynamical system, may have phase tran-
sitions, behaving differently for different initial configurations (the question
is ultimately undecidable (see [28])). The chances of having a CA display
its average behaviour (that is, its behaviour for most initial configurations)
are greater when taking a “random” initial configuration, if one assumes that
there is no bias towards any particular region of the possible enumerations of
initial configurations (consider the behaviour of a CA starting from one initial
configuration versus another (see Figures 2). One can even enumerate initial
configurations according to how a system behaves, hence artificially biasing
the result for a potentially arbitrary number of initial conditions, making a
system assume a particular appearance for an arbitrary length of time).

If, for example, one enumerates binary initial configurations in Wolfram’s
tradition (in a decimal-to-binary code), one has to assume that any segment of
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(a) (b)

(c) (d)

FIGURE 2
To which of Wolfram’s Classes do these two ECAs (Rule 22 and Rule 109) belong? (a) Wol-
fram’s ECA Rule 22 starting from a single black cell, (b) Rule 22 starting from another initial
configuration (11001), (c) Wolfram’s ECA Rule 109 starting from a single black cell, (d) The
same Rule 109 starting from another initial configuration (111101).

the enumeration yields the same average behaviour when using a “random”
initial configuration. In a word, if a behaviour occurs more often when a “ran-
dom” initial configuration is used, the chances are greater that it will represent
the “average” behaviour of the CA. Yet this does not solve the problem of a
system that may behave in a completely unprecedented fashion for a runtime
or a set of initial configurations not explored before. In [134], however, the
idea is to introduce the concept of a posteriori asymptotic behaviour of a
CA inspired by techniques in dynamical systems but to the actual evolutions
of a system (in order to make the measure applicable to natural systems),
that is both how a CA behaves over time and for an initial segment of initial
configurations.

But in order to capture the “natural” behaviour of a CA one has first to
devise a better way to enumerate initial configurations than the traditional
decimal-to-binary method, so as to overcome the problem of introducing arti-
ficial phase transitions from the input. Consider the decimal-to-binary enu-
meration where the initial input with traditional number 31 in decimal, con-
verted to binary, is the initial input 11111 for the CA, as contrasted with the
initial input 32 in decimal, 100000 in binary. One shouldn’t then be surprised
to see a qualitative change in the behaviour of a system arising from such a
non-natural change from one initial input to the next one. However, if one
guarantees that only a bit will change from one initial configuration to the
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next, one can avoid such cases. This is what a Gray (or Gray-Gros) code
based enumeration of initial configurations allows, as explained in [134].

This treatment permits the definition of a compression-based phase tran-
sition coefficient capturing the asymptotic behaviour of a system [134, 136],
which in turn allows us to separate the collapsed classes and even advance a
different and alternative classification, based on the sensitivity of a CA to its
initial conditions [134], which has also been conjectured to be related to the
system’s ability to transfer information, and ultimately to its computing abil-
ities, particularly as these relate to Turing universal computation (see [136]).
This approach does not solve the problem of a system that behaves in a qual-
itatively different manner after a certain number of initial input configura-
tions or after a certain period of time (the same problem encountered when
devising the original classification), which is not a problem of method, but is
instead related to the general problem of induction and of reachability (hence
to undecidability in general). Nonetheless it does address the problem of a
reasonable definition of the “average behaviour” of a system (in this case
a CA) under the same assumptions made for other enumerations (viz. that
enumerations, especially natural ones, have no distinct regions where a sys-
tem starts behaving in a completely different fashion, making it impossible to
talk about the convergence in behaviour of a system). Wolfram’s classes can
once again be separated using the compression-based approach in combina-
tion with the following classification [135], derived from a phase transition
coefficient presented in [134]:

� Class I: insensitivity to initial configurations, inability to transfer infor-
mation other than isolated bits;

� Class II: sensitivity to initial conditions, ability to transfer some infor-
mation;

� Class III: insensitivity to initial configurations, inablility to transfer
information, perhaps due to lack of (evident means of) control;

� Class IV: sensitivity to initial conditions, ability to transfer some infor-
mation.

One can only understand how Classes I and III can now be together in
this classification on the basis of the qualitative treatment explained above.
In other words, when one changes the initial configuration of a system in
either of these two classes (I and III) the system’s behaviour remains the
same (each evolution is equally compressible), and it is therefore considered
unable to or inefficient at transferring information or programming a CA to
perform (universal) computation. On the other hand, classes II and IV are
better at transferring information, even if they may do so in different ways.
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This classification tells us that classes II and IV are more sensitive to initial
configurations (e.g. Wolfram’s ECA rule 22, considered to belong to Class II,
and Wolfram’s ECA Rule 110 belonging to Class IV). Another way to show
how members of Classes I and III may belong to the same class in the second
classification is through another interesting and useful concept, the concept
of heat (c.f. Section 3).

Together, the compression-based classifications capturing different
behaviours of the systems capture other intuitive notions that one would
expect from Wolfram’s original classification. The values for ECA calculated
in [134] yielded results that also suggest that one may be able to relate these
measures to universality through the definition of Class IV, as given above
(see [136]).

2 UNIVERSAL CA CLASS IV VERSUS CLASS III

Culik II and Yu have demonstrated [28] that whether a CA belongs to Class
IV is undecidable. Nevertheless, some approximations have been devel-
oped, with interesting results. The use of genetic programming by Melanie
Mitchell, Rajarshi Das, Peter Hraber, and James Crutchfield [30,84] to obtain
sets of rules with particles and computations is a case in point. As indeed is
Emmanuel Sappin’s calculation of a non-additive universal 2D CA with a
genetic algorithm, the R rule [102, 103]. However, the use of evolutionary
techniques has been limited to a small portion of complex CA with few states
and small configurations. Up to now, brute force programming has been nec-
essary to obtain monsters of complex patterns in huge spaces, as Eppstein
shows in [33].

2.1 The Game of Life: Class IV
The most popular 2D CA is certainly Conway’s Game of Life (GoL), a
binary 2D additive CA, first published in Martin Garden’s column in Sci-
entific American [36]. GoL can be represented as R(2, 3, 3, 3), or typically,
as the B3/S23 rule.4 In 1982, Conway proved that GoL was universal by
developing a register machine working with gliders, glider guns, still life
and oscillator collisions [17]. However, such universality was completed by
Paul Rendell’s demonstration in 2000 that involved implementing a 3-state,
3-symbol Turing machine in GoL [99, 100]. The machine duplicates a pat-
tern of 1’s within two 1’s on the tape to the right of the reading position,
running 16 cycles to stop with four 1’s on the tape. A snapshot of this imple-
mentation is provided in Figure 3a. For details about each part and about the

4An excellent forum on GoL is “LifeWiki” http://conwaylife.com/wiki/index.php?title=Main Page.
To complement this, you may consult “The Game of Life Sites” http://uncomp.uwe.ac.uk/genaro/
Cellular Automata Repository/Life.html.



COMPUTATION AND UNIVERSALITY 403

(a)

(b)

FIGURE 3
(a) A 3-state, 3-symbol Turing machine in GoL by Rendell [99, 100], (b) its mean field curve.
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functionality of this machine please visit “Details of a Turing Machine in
Conway’s Game of Life” http://rendell-attic.org/gol/tmdetails.htm.

GoL is a typical Class IV CA evolving with complex global and local
behaviour. In its evolution space we can see a number of complex patterns
which emerge from different configurations. Gol has been studied since 1969
by Conway, and William Gosper of MIT’s Artificial Life research group has
taken a strong interest in it. The tradition of GoL research is very much
alive, with today’s GoL researchers discovering new and very complex con-
structions by running complicated algorithms. In 2010, GoL celebrated its
40th anniversary. The occasion was marked by the publication of the volume
“Game of Life Cellular Automata” [6], summarising a number of contempo-
rary and historical results in GoL research as well as work on other interesting
Life-like rules.

According to mean field theory, p is the probability of a cell’s being in
state ‘1’ while q is its probability of its being in state ‘0’ i.e., q = 1 − p, and
the mean field equation represents the neighbourhood that meets the require-
ment for a live cell in the next generation [76]. As we have already seen,
horizontal plus diagonal tangency, not crossing the identity axis (diagonal),
and the marginal stability of the fixed point(s) due to their multiplicity indi-
cates Wolfram’s Class IV [46], or complex behaviour. Hence, we will review
the global behaviour of GoL using mean field theory. Figure 3b shows the
mean field curve for GoL, with polynomial:

pt+1 = 28p3
t q5

t (2pt + 3qt ).

The origin is a stable fixed point, while the unstable fixed point p = 0.2 rep-
resents the fact that densities around 20% induce complex behaviour for con-
figurations in such a distribution. p = 0.37 is the maximum stable fixed point
where GoL commonly reaches global stability inside the evolution space.

In [137] a compression-based coefficient for GoL was calculated, show-
ing that, as expected, it exhibits a high degree of variability (see Figure 4)
and programmability. This is in agreement with the known fact that GoL is
capable of universal computation, and hence supports the notion discussed
in [136] that sensitivity to initial configurations and rate of information trans-
mission is deeply connected to (Turing) universality and can be measured by
metrics inspired in approximations to algorithmic complexity.

2.2 Life-like rule B35/S236: Class III
The Life-like CA evolution rule B35/S236 was proposed by Eppstein
and Dean Hickerson as a chaotic CA with sufficient elements for devel-
oping universality. Details about these computable elements are available
at http://www.ics.uci.edu/˜eppstein/ca/b35s236/construct.html. The family
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FIGURE 4
Lossless compressing (with the DEFLATE algorithm) the evolution of the Game of Life start-
ing from 4 different random initial conditions from 1 to 40 steps (generations) shows that the
behaviour of the system remains relatively complex, given that none led to substantial compress-
ibility, as would have been the case if patterns die out after a period of time.

of gliders and other complex constructions in this rule can be found at
http://www.ics.uci.edu/˜eppstein/ca/b35s236/.

The B35/S236 automaton commonly evolves chaotically. Figure 5a dis-
plays a typical chaotic evolution starting from an L-pentomino configuration;
after 1,497 generations there is a population of 52,619 live cells. Here we see
how a few gliders emerge from chaos and then quickly escape, although the
predominant evolution over a long period is chaotic.

Figure 5b shows the mean field curve for CA B35/S236, with polynomial:

pt+1 = 28p3
t p2

t (p4
t + 2pt q

3
t + 2p2

t q2
t + 3q4

t ).

The origin is a stable fixed point (as in GoL) which guarantees the stable
configuration in zero, while the unstable fixed point p = 0.1943 (again very
similar to GoL) represents densities where we could find complex patterns
emerging in B35/S236. p = 0.4537 is the maximum stable fixed point at
which B35/S236 commonly reaches global stability.

This way, B35/S236 preserves the diagonal tangency between a stable
and an unstable fixed point on its mean field curve. But although its val-
ues are close to those of GoL, CA B35/S236 has a bigger population of
live cells, which is not a sufficient condition for constructing reliable com-
ponents, especially from unreliable organisms. One of most important von
Neumann’s feature constructing his universal 29-states was that of universal-
ity [118] but it was not long after that the property of universality was found
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(a)

(b)

FIGURE 5
(a) Evolution starting from an L-pentomino in Life-like CA B35/S236, (b) its mean field curve.
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to be not completely necessary in order to be able to design (or find) a system
(a CA) capable of robust self-reproduction, such as Langton’s CA known as
Langton’s Loops.

2.3 Life-like rule Seeds and the Diffusion Rule: Class III
There is a special case of a Life-like CA that was originally reported by
Brian Silverman and named by Mirek Wójtowicz as Seeds (Life-like rule
B2).5 Another study presented the so called Diffusion Rule (Life-like rule
B2/S7) [67].6 The two rules behave identically, as do the rules B2/S67,
B2/S6 and B2/S5, which gradually preserve/lose a significant number of
complex structures.

Although the Seeds CA was widely studied, only a number of unreported
basic gliders and small glider guns were presented in [67]. Interestingly,
B2/S7 shows a combination of chaos (dominant evolution) and very stable
configurations, including large histories of evolutions.

Such automata have an amazing number of gliders, puffer trains,
avalanches, and glider guns as compared to many other Life-like rules. How-
ever, stable configurations cannot be designed.

Figure 6 displays a typical chaotic evolution arising in the Diffusion Rule
CA from a triple collision of three basic gliders (initialised at the top right
corner of the figure). Thus, the resultant dynamic is quickly dominated by
generally chaotic behaviour. Nevertheless, we can see a number of gliders
and complex patterns emerging and traveling at the same velocity.

The Diffusion Rule displays complex patterns useful for developing com-
putable devices. Some elements have been developed using these patterns
in [6, 67]. A problem with this automaton is that the computation must
be designed on an infinite space using movable components, just like an
Extended Analog Computer [85].

Glider guns guarantee a constant flow of bits and their interactions induce
the computation. A very simple memory device was designed in the Diffusion
Rule– between a basic glider and an oscillator– that can also produce an
asynchronous XNOR and XOR gate, and it is possible to implement a FANOUT

gate as well (for details please see [67]).
In this paper we present a construction in the Diffusion Rule that applies

four bigger glider guns and four collisions to get a double memory device
(that works equally well in the Seeds CA). Two small oscillators collide with
four basic gliders to represent this primitive memory, and they are controlled
by four identically composed glider guns rotated orthogonally, so that they
travel forever in an infinite evolution space. Such a construction is shown in

5Cellular Automata rules lexicon. Family Life: http://psoup.math.wisc.edu/mcell/rullex life.html.
6Diffusion Rule home page: http://uncomp.uwe.ac.uk/genaro/Diffusion Rule/diffusionLife.html
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FIGURE 6
Chaos and gliders emerging in the Diffusion Rule from a triple collision between three basic
glides.

Figure 7a. A number of collision analyses are in progress in a bid to obtain
more complex computable devices.

Thus Figure 7b shows the mean field curve for the Diffusion Rule CA (or
B2/S7) with polynomial:

pt+1 = 4p2
t q(2p6

t + 7q6
t ).

The origin displays a stable fixed point (as in GoL) which guarantees the
stable configuration in zero, while the unstable fixed point p = 0.05 (signifi-
cantly low compared to GoL) represents the densities where we find complex
patterns emerging in the Diffusion Rule, as can be seen in Figure 7b.

The first maximum point p = 0.2381 is very close to the second stable
fixed point in p = 0.2363 where the Diffusion Rule reaches its dominant
density of live cells with a high level of activity–chaotic in this case, because
the oscillation between the minimum p = 0.0618 and the second maximum
point p = 0.3464 shows a different density in each generation, also oscillat-
ing to the second stable fixed point value.
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(a)

(b)

FIGURE 7
(a) Memory device in the Diffusion Rule, (b) its mean field curve.
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2.4 Life-like rule B2/S2345: Class III
As we have seen, the computational universality of the GoL CA has already
been demonstrated by various implementations. Among them are a functional
register machine by Conway [17], direct simulations of Turing machines by
Paul Chapman [20] and Rendell [99], a complete set of logical functions
by Jean-Philippe Rennard [101], and recently, the design of a sophisticated
universal constructor by Adam Goucher [41, 42]. These implementations
use principles of collision-based computing [4], where information is trans-
ferred by mobile localizations (gliders) propagating in an architecture-less,
or ‘free,’ space. The theoretical results pertaining to GoL universality consti-
tute just the first step in a long journey towards real-world implementation
of collision-based computers as unconventional computing devices [4, 113].
Controllability of signals is the first obstacle to overcome. Despite their
stunning elegance and complexity-wise efficiency of implementation, ‘free-
space’ computing circuits are difficult to fabricate from physical or chemical
materials [1] because propagating localizations (solitons, breathers, kinks,
wave-fragments, particles) are notoriously difficult to manipulate, maintain
and navigate.

In this section, we analyse the Life-like CA rule B2/S2345.7 This automa-
ton is a discrete analog spatially extended chemical medium, combining
properties of both sub-excitable and precipitating chemical media. From
a random initial configuration, the B2/S2345 automaton exhibits chaotic
behaviour, Class III. Configurations with low density of state ‘1’ manifest
the emergence of gliders and stationary localizations. This CA is able to sup-
port basic logic gates and elementary arithmetical circuits by simulating logi-
cal signals, with the propagation of gliders’ growing geometrically restricted
by stationary non-destructible localizations. Values of Boolean variables are
encoded into two types of patterns — symmetric (FALSE) and asymmetric
(TRUE) patterns — which compete for the ‘empty’ space when propagating
in the channels. Implementations of logic gates and binary adders are shown
in [64, 68, 86]. Thus Figure 8 depicts a binary half-adder implemented in
B2/S2345.

Figure 7b shows the mean field curve for B2/S2345 with polynomial:

pt+1 = 7p2
t q3

t (4pt q
3
t + 8p2

t q2
t + 10p3

t qt + 8p4
t + 4q4

t ).

The origin displays a stable fixed point (as in GoL) which guarantees the
stable configuration in zero, while the unstable fixed point p = 0.0517 (sig-
nificantly low compared to GoL and close to that of the Diffusion Rule)
represents the densities where we find complex patterns, as can be seen in

7 B2/S2345 is a CA within the domain of Life-like rules dc22 http://uncomp.uwe.ac.uk/genaro/
Life dc22.html
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(a)

(b)

FIGURE 8
Chaotic Life-like rule B2/S2345 (a) implementation of a half adder by competing patterns coded
from glider reactions, (b) its mean field curve.

Figure 7b. The stable fixed point is very close to the maximum point. This is
p = 0.4679, almost a Gaussian curve.

2.5 ECA Rule 110: Class IV
The 1D binary CA rule numbered 110 in Wolfram’s system of classifica-
tion [121] has been the object of special attention due to the structures or
gliders which have been observed in instances of its evolution from random
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initial conditions. The rule is assigned number 110 in Wolfram’s enumera-
tion because it represents the decimal base of the transition rule expanded
in binary: 01110110. The transition function evaluates the neighbourhoods
synchronously in order to calculate the new configuration transforming the
neighbourhoods 001, 010, 011, 101 and 011 into state 1 and the neigh-
bourhoods 000, 100 and 111 into state 0. It has been suggested that Rule
110 belongs to the exceptional Class IV of automata whose chaotic aspects
are mixed with regular patterns. But in this case the background where the
chaotic behaviour occurs is textured rather than quiescent, a tacit assumption
in the original classification.8 Rule 110 was granted its own appendix (Table
15) in [124]. It contains specimens of evolution including a list of thirteen
gliders compiled by Lind and also presents the conjecture that the rule could
be universal.

The literature on the origins of Rule 110 includes a statistical study done
by Wentian Li and Mats Nordahl in 1992 [59]. This paper studies the tran-
sitional role of Rule 110 and its relation to Class IV rules figuring between
Wolfram’s classes II and III. The study would seem to reflect an approach to
equilibrium statistics via a power law rather than exponentially.

Matthew Cook wrote an eight page introduction [23] listing gliders from
A through H and a glider gun.9 This list shows new gliders which do not
appear on Lind’s list, gliders with rare extensions, and a pair of gliders of
complicated construction. Cook makes a comparison between Rule 110 and
Life, finding some similarities in the behaviour of the two evolution rules and
suggesting that Rule 110 may be called “LeftLife.”

Looking at the rule itself, one notices a ubiquitous background texture
which Cook calls “ether,” although it is just one of many regular stable lattices
capable of being formed by the evolution rule, and can be obtained quickly
using the de Bruijn diagrams [79, 88].

McIntosh raises the issue of the triangles of different sizes that cover the
evolution space of Rule 110 [80]. The appearance of these triangles suggests
the analysis of the plane generated by the evolution of Rule 110 as a two
dimensional shift of finite type. This suggestion is arrived at by observing that
the basic entities in the lattices, the unit cells, induce the formation of upside-
down isosceles right triangles of varying sizes. The significance of Rule 110
could lie in the fact that it is assembled from recognizably distinct tiles, and
hence its evolution can be studied as a tiling problem, in the sense of Hao
Wang [39]. It may even be possible to see fitting elements of one lattice into
another as an instance of Emil L. Post’s correspondence principle [29], which
would establish the computational complexity of the evolution rule [79].

8A repository of materials on ECA Rule 110 can be found at: http://uncomp.uwe.ac.uk/genaro/
Rule110.html.

9An extended list of gliders in Rule 110 is provided in http://uncomp.uwe.ac.uk/genaro/rule110/
glidersRule110.html.
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FIGURE 9
Typical random evolution of ECA Rule 110. Initial density begins at 50% per state in an evo-
lution space of 1,244,300 cells. This is an initial condition of 1,082 cells evolving in 1,150
generations. A filter is selected for optimal clarity of gliders and collisions [88, 90].

The most important result both in the study of Rule 110 and in CA theory
over the last twenty years, is the demonstration that Rule 110 is universal
[24, 25, 81, 91, 128].

In Figure 9, a typical random evolution of Rule 110 is displayed. Here we
can see a diversity of gliders emerging and colliding for more than one thou-
sand generations. The ether pattern is the periodic background where gliders
travel and interact unperturbed. Consequently, as in GoL, each glider in Rule
110 can be obtained from a set of reactions among gliders, and Rule 110
objects can be constructed as well as Rule 110-based collisions (see [89]).

To show universality in Rule 110, a cyclic tag system (CTS) was designed
to be useful in its particular environment with its characteristic restrictions:
1D, boundary conditions, package of gliders, and multiple collisions. CTS are
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FIGURE 10
First stage of a CTS working in Rule 110.

new machines proposed by Cook in [24] as tools for implementing computa-
tions in Rule 110. CTS are a variant of tag systems. Like the latter, they read a
tape from the front and add characters at the end. Nevertheless there are some
new characteristics and restrictions. Snapshots relating to their functionality
are displayed in Figure 10 and 11 [91].10

10A detailed description of this CTS working in Rule 110 can be found in [24, 25, 81, 91, 128].
Large high resolution snapshots of different stages of the machine are available on the Internet at
http://uncomp.uwe.ac.uk/genaro/rule110/ctsRule110.html.
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FIGURE 11
Type, binary data (a 0 in this case), and deleting binary data in 29,400 generations.

Thus Figure 13b shows the mean field curve for Rule 110 with polyno-
mial:

pt+1 = 2pt q
2
t + 3p2

t qt .

The origin displays a stable fixed point (as in GoL) which guarantees the
stable configuration in zero. The maximum point (p = 0.6311) is close to
the fixed stable point in p = 0.62. In Rule 110 we cannot find unstable fixed
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points, and in any case the emergence of complex structures is ample and
diverse.

A basin (of attraction) field of a finite CA is the set of basins of attraction
into which all possible states and trajectories will be organised by the local
function ϕ. The topology of a single basin of attraction may be represented
by a diagram, the state transition graph. Thus the set of graphs composing
the field specifies the global behaviour of the system [119].

In Figure 12 we see the basin of attraction fields for a ring of 26 cells in
Rule 110, the aptly named cycle diagrams [82]. Wuensche determines how
a basin of attraction field can classify CA into Wolfram’s classes by means
of attractors. For a CA Class IV we will see moderate transients, moderate-
length periodic attractors, moderate n-degree, and very moderate leaf den-
sity [119, 132]. In Figure 12 several cycles have symmetric ramifications.
However, other cycles have non-symmetric ancestors with very long histo-
ries before they reach the root or attractor. Also the symmetric cycles have
very long ramifications in comparison with chaotic rules, and the trees are
not highly dense.

As calculated in [134], rules such as Rule 110 and Rule 54 (also believed
to be capable of universal computation, c.f. 2.6) had a large compression-
based phase transition coefficient, as discussed in Section 1.3, meaning that
their ability to transfer information was well captured by the measure defined
in [134] (and, interestingly, perhaps strengthens the belief that Rule 54 is
capable of Turing universality).

2.6 ECA Rule 54: Class IV
ECA Rule 54 is a two-state, three-neighbour cellular automaton in Wolfram’s
nomenclature, and is less complex than Rule 110. Nevertheless its dynam-
ics are rich and complex.11 A Systematic and exhaustive analysis of glider
behaviour and interactions, including a catalog of collisions, was provided
in [65]. Many of them promise computational elements for future designs. In
one case a number of logic gates were derived from binary and triple colli-
sions. In [128], Wolfram presents some functions produced by long series of
periodic collisions in Rule 54 (page 697). However, no proof of the univer-
sality of Rule 54 has been offered yet.

In their pioneering work, Boccara, Nasser, and Roger [18] presented a
preliminary list of gliders and discussed the existence of a glider gun. They
also applied some statistical analysis to examine the stability of gliders.
Later, Hanson and Crutchfield [49] introduced the concept of “computa-
tional mechanics” – applied finite state machine language representation– in

11A repository of materials on ECA Rule 54 can be found at: http://uncomp.uwe.ac.uk/genaro/
Rule54.html.
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FIGURE 12
Basin of attraction field for configurations on a ring of 26 cells in Rule 110.

studying defect dynamics in 1D CA, and in deriving motion equations for
filtered gliders. More studies were undertaken by Wolfram [128], who pre-
sented glider collisions with long periods of after-development and sev-
eral filters for detecting gliders and defects, and Bruno Martin [73], who
designed an algebraic group of order four to represent collisions between
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FIGURE 13
Mean field curve for ECA Rule 110.

basic gliders. By the way, David Hillman had calculated the same algebraic
property before, but he did not publish it.12

Figure 14 illustrates a typical random evolution in ECA Rule 54. The
glider family comprises four basic gliders and one glider gun.13 However,
three new glider guns and other Rule 54 object based collisions were reported
in [65], and an exotic double glider gun in [66]. It is noteworthy that Rule 54
can yield glider guns from random initial conditions, which is very difficult
in Rule 110. On the other hand, in Rule 110, sometimes the evolution reaches
stability of complex structures between 100 to 500 generations, but in Rule 54
we have longer transients before achieving stability. Yet Rule 110 has a base
of 12 gliders versus the four basic gliders in Rule 54. This instability is owed
to the low probability of annihilation of gliders in Rule 54. Hence for binary
collisions the probability is 10% and for triple collisions it is 3.33% [65].

Figure 15 shows the mean field curve for Rule 54 with polynomial:

pt+1 = 3pt q
2
t + p2

t qt .

The origin displays a stable fixed point (as in GoL) which guarantees the
stable configuration in zero. The maximum point (p = 0.5281) is very close
to the fixed stable point in p = 0.5, although we cannot find unstable fixed
points, as is the case with Rule 110 as well.

12Personal communication.
13A full list of gliders in Rule 54 is available at http://uncomp.uwe.ac.uk/genaro/rule54/glidersRule54.

html.
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FIGURE 14
Typical random evolution of ECA Rule 54. Initial density begins with 50% per state in an evo-
lution space of 1,244,300 cells. This is an initial condition of 1,082 cells evolving over 1,150
generations. A filter is selected for optimal clarity of gliders and collisions [64, 65].

FIGURE 15
Mean field curve for ECA Rule 54.
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FIGURE 16
Basin of attraction field for configurations on a ring of 26 cells in Rule 54.

On the other hand, in Figure 16 we can see the basin of attraction fields
for a ring of 26 cells in Rule 54. Here we can see attractors with moderate
transients, moderate-length periodic attractors, moderate n-degree, and very
moderate leaf density. Also, we have some attractors with non-symmetric
trees and branches, and we have other kinds of attractors with dense foliage
strongly related to chaotic behaviour.
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3 HEAT AND PROGRAMMABILITY OF CLASS III SYSTEMS

In the Game of Life community there is an often used heat measure14, defined
as the average number of cells which change state in each generation (note the
connections to Shannon’s Entropy and the Mean Field Theory). For example,
the heat of a glider in GoL is known to be four, because two cells are born
and two die in every generation, and that for a blinker is 4, because 2 cells
are born and 2 die in every generation. In general, for a period n oscillator
with an r -cell rotor, the heat is at least 2r/n, and no more than r (1 − (n
mod 2)/n).

Wolfram identified some of these issues in his enumeration of open prob-
lems in the research on CA [127] (problems 1, 2 and 14), concerning the con-
nections between the computational and statistical characteristics of cellular
automata, measures of entropy and complexity and how to improve his classi-
fication using dynamic systems (which was one of the motivations of [134]).
Wolfram asks, for example, about the rate of information transmission of a
CA in relation to its Lyapunov exponent (positive for Classes III and IV) and
the computational power of these systems according to their classes.

The concept of heat can clearly be associated with Wolfram’s chaotic
Class III, where CAs, e.g., rule 30, change state at a very high rate, (see
Figures (c) 1), which is what keeps them from developing persistent struc-
tures such as are seen in Rule 110 (see Figure (d) 1, 10 and 11). The presence
of persistent structures in Wolfram’s Rule 110 and Conway’s Game of Life is
what allows them to perform computation–implementing logic gates or trans-
ferring information over time by putting particles in the way of interacting
with each other. So the question is whether CAs such as the ones belonging
to Wolfram’s Class III are too “hot” to transfer information and are there-
fore, paradoxically, just like Class I systems–unable to perform computation.
Alternatively, Class III may be able to perform computation, as has been sug-
gested, but it may just turn out to be difficult to program such systems (if not
designed to be a Class III system by using first a system from another class,
somehow hiding its computing capabilities), and this is what the compress-
ibility approach discussed in Section 1.3 seems to be measuring for this class
and which has been advanced in [135] as a measure of programmability.

4 FINAL REMARKS

Usually, chaotic rules are not considered candidates for computational uni-
versality. The Class III question we have formulated herein is the question

14See http://www.argentum.freeserve.co.uk/life.htm accessed in July 2012.
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of whether computation and Turing universality is possible in chaotic cellu-
lar automata. Universality results in simple programs capable of complicated
behaviour have traditionally relied on localized structures (“particles”) well
separated by relatively uniform regions. This means that a measure like the
entropy of the system tends to be well below its theoretical maximum. The
open problem is therefore to prove computational universality in a simple
program system for which an entropy measure on each time step remains
near its maximum. Can a “hot system” of this sort perform meaningful com-
putation?

We have shown some cases where chaotic rules can support complex pat-
terns, including logical universality. Exploring many CA rules, including the
exceptionally chaotic Life-like rule Life without Death [37], one finds that
there are several rules between chaos and complexity which are not included
within the domain of complex behaviour. However, they present many ele-
ments equally likely to reach Turing computational universality. An impor-
tant point made in this review is that it seems clearly to be the case that it is
not only complex CA15 rules that are capable of computation, and that CA,
even if simple or random-looking, may support Turing universality. Whether
the encoding to make them actually compute turns out to be more difficult
than taking advantage of the common interacting persistent structures in rules
usually believed to belong to Wolfram’s class IV is an open question.

Previous results on universal CAs (developing signals, self-reproductions,
gliders, collisions, tiles, leaders, etc.) prove that unconventional computing
can be obtained depending on the nature of each complex system. For exam-
ple, to prove universality in Rule 110 it was necessary to develop a new
equivalent Turing machine to take advantage of limitations in 1D and the
same dynamics in its evolution space, e.g., mobility of gliders and boundary
properties. Hence, a CTS was devised, before this system was known as a
circular machine [14, 54, 75, 93]. This way, the nature of each system would
determine the best environment in which to design a corresponding computer.
This could be the basis of Wolfram’s Principle of Computational Equiva-
lence and it is also the inspiration behind the definition of programmabil-
ity measures for natural computation in [135]. Wolfram’s Principle of Com-
putational Equivalence ultimately only distinguishes between two kinds of
behaviours (despite Wolfram’s own heuristic classification), namely those
that are “sophisticated” enough and reach Wolfram’s threshold, constituting
a class of systems capable of computational universality, and those that fall
below this threshold and are incapable of universal computation. And indeed,

15A Complex Cellular Automata Repository with several interesting rules is available at http://
uncomp.uwe.ac.uk/genaro/otherRules.html. We particularly recommend Tim Hutton’s Rule Table
Repository http://code.google.com/p/ruletablerepository/.
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the compression-based classification in [134] at first distinguishes only two
classes.

A number of approximations were developed or adapted to find complex
CA. Perhaps the most successful technique was the one developed by Wuen-
sche, with its Z parameter [132]. Some attempts were made by Mitchell
et. al using genetic algorithms, although they had a particular interest in
finding rules able to support complex patterns (gliders) with computational
uses [30, 130]. Unfortunately, these algorithms have strong limitations when
it comes to searching in large rule spaces and very complex structures. And
though the technique in [134] has proven capable of identifying complex sys-
tems with great accuracy, it requires very large computational resources to
extend the method to larger rule spaces if a thorough investigation is desired
(though in conjunction with other techniques it may turn out to be feasible).

As it has proven to be a very rich space, new kinds of CAs are proposed all
the time. e.g., reversible CA [53, 78, 105], partitioned CA [128], hyperbolic
CA [69], CA with non-trivial collective behaviour (self-organization) [26,
27], asynchronous CA [34], biodiversity in CA [61], CA with memory [9,10],
morphological diversity [12], identification of CA [2, 134], communication
complexity [31, 40], pattern recognition from CA [13], to mention a few.

Some other studies dedicated to designing or identifying universal CAs are
[3,4,38,48,74]. Obtaining CA of Class IV from other rules has been studied
via lattice analysis [43], with memory [7,8,11,62,63,74], asynchronous [19,
34, 112, 115], differential equations [21], partitioned [51, 71, 72, 83, 87, 92–
94], parity-filter CA [52,98,108], number-conserving [95] changing different
neighbourhoods in CA [120].

CA as super computer models are developed extensively in [1,3–5,16,22,
35, 48, 50, 70, 75, 96, 107, 113, 114, 118, 125, 129].

SOFTWARE USED FOR SIMULATIONS AND PLOTS IN
THIS PAPER

� Discrete Dynamics Lab (DDLab) [133] http://ddlab.org/
� Grapher http://guides.macrumors.com/Grapher
� Golly http://golly.sourceforge.net/
� OSXCA system http://uncomp.uwe.ac.uk/genaro/OSXCASystems.html
� Wolfram Mathematica 8 http://www.wolfram.com/
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[39] Grünbaum, B. & Shephard, G. C. (1987) Tilings and Patterns, W. H. Freeman and Com-
pany, New York.

[40] Goles, E., Moreira, A., & Rapaport, I. (2011) Communication complexity in number-
conserving and monotone cellular automata, Theoretical Computer Science, 412 3616–
3628.

[41] Goucher, A. P. (2009) Completed Universal Computer/Constructor, In: Pentadecathlon
website http://pentadecathlon.com/lifeNews/2009/08/post.html.

[42] Goucher, A. P. (2010) Universal Computation in GoL Cellular Automata, In: Game of
Life Cellular Automata, A. Adamatzky (Ed.), Springer, 505–518.



426 GENARO J. MARTÍNEZ et al.
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