Transitive behavior in reversible one-dimensional cellular automata with a Welch index 1

dc.contributor.authorSeck Tuoh Mora, Juan Carloses
dc.date.accessioned2014-06-24T21:29:27Z
dc.date.available2014-06-24T21:29:27Z
dc.date.issued2002es
dc.description.abstractThe problem of knowing and characterizing the transitive behavior of a given cellular automaton is a very interesting topic. This paper provides a matrix representation of the global dynamics in reversible one-dimensional cellular automata with a Welch index 1, i.e. those where the ancestors differ just at one end. We prove that the transitive closure of this matrix shows diverse types of transitive behaviors in these systems. Part of the theorems in this paper are reductions of well-known results in symbolic dynamics. This matrix and its transitive closure were computationally implemented, and some examples are presented.es
dc.identifier.citationSeck Tuoh Mora, Juan carloses
dc.identifier.urihttps://repository.uaeh.edu.mx/bitstream/handle/123456789/15256
dc.languageeses
dc.subjectAutomatización y Optimización de Sistemas Industriales Autómatas Celulareses
dc.titleTransitive behavior in reversible one-dimensional cellular automata with a Welch index 1es
dc.typeArticlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
transitive_behavior_in_reversible.pdf
Tamaño:
385.11 KB
Formato:
Adobe Portable Document Format

Colecciones