Welch sets for random generation and representation of reversible one-dimensional cellular automata !
dc.contributor.author | Seck Tuoh Mora, Juan Carlos | |
dc.date.accessioned | 2018-07-04T21:23:33Z | |
dc.date.available | 2018-07-04T21:23:33Z | |
dc.date.issued | 2016-12-07 | |
dc.description.abstract | Reversible one-dimensional cellular automata are studied from the perspective of Welch Sets. This paper presents an algorithm to generate random Welch sets that define a reversible cellular automaton. Then, properties of Welch sets are used in order to establish two bipartite graphs describing the evolution rule of reversible cellular automata. The first graph gives an alternative representation for the dynamics of these systems as block mappings and shifts. The second graph offers a compact representation for the evolution rule of reversible cellular automata. Both graphs and their matrix representations are illustrated by the generation of random reversible cellular automata with 6 and 18 states. | es |
dc.identifier.uri | https://repository.uaeh.edu.mx/bitstream/123456789/18748 | |
dc.language.iso | en_US | es |
dc.subject | Cellular automata Reversibility Welch indices Bipartite graph Block mapping | es |
dc.title | Welch sets for random generation and representation of reversible one-dimensional cellular automata ! | es |
dc.type | Article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- welch_sets_for_random_generation_and_representation.pdf
- Tamaño:
- 6.79 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: