REALIZATION OF A SIMPLE HIGHER DIMENSIONAL NONCOMMUTATIVE TORUS AS A TRANSFORMATION GROUP C*-ALGEBRA

dc.contributor.authorItzá Ortiz, Benjamín Alfonsoen_US
dc.date.accessioned2013-11-04T22:15:25Z
dc.date.available2013-11-04T22:15:25Z
dc.date.issued2008en_US
dc.description.abstractLet be a nondegenerate skew symmetric real d × d matrix, and let A be the corresponding simple higher dimensional noncommutative torus. Suppose that d is odd, or that d 4 and the entries of are not contained in a quadratic extension of Q. Then A is isomorphic to the transformation group C*-algebra obtained from a minimal homeomorphism of a compact connected one dimensional space locally homeomorphic to the product of the interval and the Cantor set. The proof uses classification theory of C*-algebras.es
dc.identifier.citationItza-Ortiz, B. and Phillips, N. C., Realization of a simple higher-dimensional noncommutative torus as a transformation group C*-algebra, Bulletin of the London Mathematical Society, 40 (2008) 217 226. Preprintedes
dc.identifier.urihttps://repository.uaeh.edu.mx/bitstream/handle/123456789/11349
dc.languageesen_US
dc.subjectFísica Matemáticaes
dc.titleREALIZATION OF A SIMPLE HIGHER DIMENSIONAL NONCOMMUTATIVE TORUS AS A TRANSFORMATION GROUP C*-ALGEBRAes
dc.typeArticleen_US

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Benja4.pdf
Tamaño:
208.03 KB
Formato:
Adobe Portable Document Format

Colecciones