Universidad Autónoma del Estado de Hidalgo
    • English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Ciencias Básicas e Ingeniería
  • Matemáticas y Física
  • Artículos
  • View Item
  •   DSpace Home
  • Ciencias Básicas e Ingeniería
  • Matemáticas y Física
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CONTINUOUS AND DISCRETE FLOWS ON OPERATOR ALGEBRAS

Thumbnail
View/Open
Benja3.pdf (156.1Kb)
Date
2009
Author
Itzá Ortiz, Benjamín Alfonso
Metadata
Show full item record
Abstract
Let (N, R, ) be a centrally ergodic W* dynamical system. When N is not a factor, we show that, for each t 6= 0, the crossed product induced by the time t automorphism t is not a factor if and only if there exist a rational number r and an eigenvalue s of the restriction of to the center of N, such that rst = 2. In the C* setting, minimality seems to be the notion corresponding to central ergodicity. We show that if (A, R, ) is a minimal unital C* dynamical system and A is either prime or commutative but not simple, then, for each t 6= 0, the crossed product induced by the time t automorphism t is not simple if and only if there exist a rational number r and an eigenvalue s of the restriction of to the center of A, such that rst = 2.
URI
https://repository.uaeh.edu.mx/bitstream/handle/123456789/11355
Collections
  • Artículos

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV