Degradación de azul de metileno por fotólisis: efecto de variables del proceso

Palabras clave: Fotólisis, Azul de Metileno, Remediación

Resumen

En el presente trabajo se reporta cómo afectan las diferentes variables de proceso sobre la fotólisis del Azul de Metileno (AM), sin el empleo de otros agentes, evaluando la fuente de radiación, la velocidad de agitación, el pH y la temperatura. Obteniendo como resultado para pH 3 -7.28%, pH 7 16.95% y a pH 11 76.09%, estos resultados se atribuyen al grupo hidroxilo (OH) presente en la solución. De igual manera se observa una gran dependencia de la fotólisis en función de la fuente de radiación y su potencia, obteniendo como resultado 62.30%, 18.65% y 8.84% para radiación solar, lámpara LED y lámpara Xenón, respectivamente. Por otro lado el incremento de la temperatura no muestra ser determinante encontrando un máximo de -8.74% cuando se calienta la solución a 46°C y, finalmente, se encontró que cambios en la agitación producen cambios en los valores de adsorción encontrando para 100 rpm 57.64%, 500 rpm 62.30% y 900 rpm 59.91%.

Descargas

La descarga de datos todavía no está disponible.

Citas

Acosta-Esparza, M.A.; Rivera, L.P.; Pérez-Centeno, A.; Zamudio-Ojeda, A.; González, D.R.; Chávez-Chávez, A.; Santana-Aranda, M.A.; Santos-Cruz, J.; Quiñones-Galván, J.G. (2020) UV and Visible light photodegradation of methylene blue with graphene decorated titanium dioxide. Mater. Res. Express, 7, 035504. Doi: 10.1088/2053-1591/ab7ac5

Abd-Elhamid A.I., Emran M., El-Sadek M.H., El-Shanshory A.A., Soliman H.M.A., Akl M.A., Rashad M. (2020) Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Appl. Water Sci, 10, 45. Doi:10.1007/s13201-019-1128-0

Albayati T.M., Sabri A.A., Alazawi R.A. (2016) Separation of Methylene Blue as Pollutant of Water by SBA-15 in a Fixed-Bed Column. Arab. J. Sci. Eng. 41, 2409–2415. Doi: 10.1007/s13369-015-1867-7

Amode J.O., Santos J.H., Md Alam Z., Mirza A.H., Mei C.C. (2016) Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: Equilibrium and kinetics studies. Int. J. Ind. Chem, 7, 333–345. Doi: 10.1007/s40090-016-0085-9

Anushree C., Philip J. (2019) Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids Surf. A Physicochem. Eng. Asp. 567, 193–204. Doi: 10.1016/j.colsurfa.2019.01.057

Bouras H.D., Isik Z, Arikan E.B., Yeddou A.R., Bouras N., Chergui A., Favier L., Amrane A., Dizge N. (2020). Biosorption characteristics of methylene blue dye by two fungal biomasses. Int. J. Environ. Stud. 78, 365–381. Doi:10.1080/00207233.2020.1745573

Choquehuanca, A.; Ruiz-Montoya, J.G.; Gómez, A.L.R.-T. (2021) Discoloration of methylene blue at neutral pH by heterogeneous photo-Fenton-like reactions using crystalline and amorphous iron oxides. Open Chem., 19, 1009–1020. Doi: 10.1515/chem-2021-0077

Guergueb, M.; Nasri, S.; Brahmi, J.; Loiseau, F.; Molton, F.; Roisnel, T.; Guerineau, V.; Turowska-Tyrk, I.; Aouadi, K.; Nasri, H. (2020) Effect of the coordination of π-acceptor 4-cyanopyridine ligand on the structural and electronic properties of: Meso-tetra(para-methoxy) and meso-tetra(para-chlorophenyl) porphyrin cobalt(ii) coordination compounds. Application in the catalytic degradation of methylene blue dye. RSC Adv., 10, 6900–6918. Doi: 10.1039/C9RA08504A

Jawad, N.H.; Najim, S.T. (2018) Removal of Methylene Blue by Direct Electrochemical Oxidation Method Using a Graphite Anode. IOP Conf. Ser. Mater. Sci. Eng., 454, 012023. Doi: 10.1088/1757-899X/454/1/012023

Kazemi F., Mohamadnia Z., Kaboudin B., Karimi Z. (2016) Photodegradation of methylene blue with a titanium dioxide/polyacrylamide photocatalyst under sunlight. J. Appl. Polym. Sci, 133, 43386. Doi: 10.1002/app.43386

Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. (2020) Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng., 8, 104364. Doi: 10.1016/j.jece.2020.104364

Mahmoud M.S., Farah J.Y., Farrag T.E. (2013) Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes. Egypt. J. Pet, 22, 211–216. Doi: 10.1016/j.ejpe.2012.09.013 Mohammed, H.A.; Khaleefa, S.A.; Basheer, M.I. (2021) Photolysis of Methylene Blue Dye Using an Advanced Oxidation Process (Ultraviolet Light and Hydrogen Peroxide). J. Eng. Sustain. Dev., 25, 59–67. Doi: 10.31272/jeasd.25.1.5

Pham V.L., Kim D.-G., Ko S.-O. (2020) Mechanisms of Methylene Blue Degradation by Nano-Sized β-MnO2 Particles. KSCE J. Civ. Eng, 24, 1976–3808. Doi: 10.1007/s12205-020-2036-4

Sahu S., Pahi S., Sahu J.K., Sahu U.K., Patel R.K. (2020) Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon—an efficient bioadsorbent for methylene blue dye: Equilibrium, kinetic, and thermodynamic study. Environ. Sci. Pollut. Res., 27, 22579–22592. Doi: 10.1007/s11356-020-08561-2

Salimi A., Roosta A. (2019) Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochim., 675, 134–139. Doi: 10.1016/j.tca.2019.03.024

Soltani T., Entezari M.H., (2013) Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. Journal of Molecular Catalysis A: Chemical 377, 197–203. Doi: 10.1016/j.molcata.2013.05.004

Sousa H.R., Silva L.S., Sousa P.A.A., Sousa R.R.M., Fonseca M.G.; Osajima J.A., Silva-Filho E.C. (2019) Evaluation of methylene blue removal by plasma activated palygorskites. J. Mater. Res. Technol, 8, 5432–5442. Doi: 10.1016/j.jmrt.2019.09.011

Wei X., Wang Y., Feng Y., Xie X., Li X., Yang S. (2019) Different adsorption-degradation behavior of methylene blue and Congo red in nanoceria/H2O2 system under alkaline conditions. Sci. Rep. 9, 4964. Doi: 10.1038/s41598-018-36794-2

Wijaya R., Andersan G., Permatasari Santoso S., Irawaty W. (2020) Green Reduction of Graphene Oxide using Kaffir Lime Peel Extract (Citrus hystrix) and Its Application as Adsorbent for Methylene Blue. Sci. Rep, 10, 667. Doi: 10.1038/s41598-020-57433-9

Xie X., Chen L., Pan X, Wang S. (2015). Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue análisis. Journal of Chromatography A. 1405, 32-39. Doi:10.1016/j.chroma.2015.05.068

Yang C., Dong W., Cui G., Zhao Y., Shi X., Xia X., Tang B., Wang W. (2017) Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv, 7, 23699–23708. Doi: 10.1039/C7RA02423A

Zeleke, M.A.; Kuo, D.H. (2019) Synthesis and application of V2O5-CeO2 nanocomposite catalyst for enhanced degradation of methylene blue under visible light illumination. Chemosphere, 235, 935–944. Doi: 10.1016/j.chemosphere.2019.06.230

Zhang, L.C.; Jia, Z.; Lyu, F.; Liang, S.X.; Lu, J. (2019) A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci., 105, 100576. Doi: 10.1016/j.pmatsci.2019.100576

Zhang J., Zhang Y., Lei Y., Pan C. (2011) Photocatalytic and degradation mechanisms of anatase TiO2: A HRTEM study. Catal. Sci. Technol, 1, 273–278. Doi: 10.1039/C0CY00051E

Publicado
2023-10-05
Cómo citar
Olivares Lugo, L. I., Rosales González, O., Sánchez De Jesús, F., Martínez Luévanos, A., & Bolarín Miró , A. M. (2023). Degradación de azul de metileno por fotólisis: efecto de variables del proceso. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 10(10), 72-76. https://doi.org/10.29057/aactm.v10i10.11226