Arqueología Forense, Quimiometria y el Método Científico

Palabras clave: arqueología forense, tecnología, investigación, métodos científicos


Las tecnologías forenses en los últimos años han incrementado su capacidad lo que ha permitido que obtengan una mejor sensibilidad y la fuerza del potencial de investigación de los científicos forenses que amplían el campo e incorporan muchas tecnologías que van desde el reconocimiento de patrones hasta la composición química y su análisis. Numerosos campos dentro de la ciencia forense se han desarrollado considerablemente a lo largo de los años, y las nuevas tecnologías han permitido nuevas aplicaciones de la ciencia forense. Este trabajo es una revisión que comprende las técnicas que se utilizan habitualmente en los laboratorios forenses, los desarrollos que tienen lugar en las universidades y otras organizaciones de investigación, que pueden volverse habituales en la ciencia forense en el futuro. El avance en la ciencia forense digital y el mayor uso de evidencia digital en los tribunales requiere una formación constante para los jueces y los científicos forenses. Esto asegurará que estén familiarizados con las tecnologías existentes y emergentes aplicables en las investigaciones forenses. Por lo tanto, comprender adecuadamente el funcionamiento de las diferentes tecnologías forenses es fundamental para ayudar a la eficacia de los sistemas que deseen implementarse.


La descarga de datos todavía no está disponible.


Ataliva, V. H., Cano, S. F., Gerónimo, A. A., Huetagoyena Gutiérrez, G. G., Leiva, A. M., Lund, J., ... & Zurita, R. D. (2021). Arqueología Forense: aspectos técnicos y metodológicos de una intervención compleja. Pozo de Vargas (Tucumán, Argentina).

Barone, P. M., & Groen, W. M. (2018). Multidisciplinary Approaches to Forensic Archaeology (p. 277). Springer International Publishing.

Brown, K. A. (2001). The future is bright: directions for future research with ancient DNA in forensic archaeology. Ancient biomolecules, 3.

Buss, D. J., Reznikov, N., & McKee, M. D. (2020). Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. Journal of Structural Biology, 212(2), 107603.

Dirkmaat, D. C., & Cabo, L. L. (2016). Forensic archaeology and forensic taphonomy: basic considerations on how to properly process and interpret the outdoor forensic scene. Academic forensic pathology, 6(3), 439-454.

Eschner, M. S., Welthagen, W., Gröger, T. M., Gonin, M., Fuhrer, K., & Zimmermann, R. (2010). Comprehensive multidimensional separation methods by hyphenation of single-photon ionization time-of-flight mass spectrometry (SPI-TOF-MS) with GC and GC× GC. Analytical and bioanalytical chemistry, 398, 1435-1445.

Evis, L. (2016). Forensic archaeology: The application of comparative excavation methods and recording systems. Archaeopress Publishing Ltd.

Ferllini, R. (2007). Forensic archaeology and human rights violations. Charles C Thomas Publisher.

Gray, F. M., Smith, M. J., & Silva, M. B. (2011). Identification and characterization of textile fibers by thermal analysis. Journal of Chemical Education, 88(4), 476-479.

Hanson, I. (2007). Psycho-social issues and approaches in forensic archaeology. Archaeological review from Cambridge, 22(2), 69-76.

Heron, C., Hunter, J., Knupfer, G., Martin, A., Pollard, M., & Roberts, C. (2013). Studies in crime: an introduction to forensic archaeology. Routledge.

Hochrein, M. J. (2002). Evidence: The Application of Forensic Geotaphonomy in Forensic Archaeology. Forensic dentistry, 83.

Horning, E. C., Horning, M. G., Carroll, D. I., Dzidic, I., & Stillwell, R. N. (1973). New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Analytical Chemistry, 45(6), 936-943.

Hunter, J. R. (2013). A background to forensic archaeology. In Studies in crime: An introduction to forensic archaeology (pp. 7-23). Routledge.

Ibrahim, J., Brumfeld, V., Addadi, Y., Rubin, S., Weiner, S., & Boaretto, E. (2022). The petrous bone contains high concentrations of osteocytes: One possible reason why ancient DNA is better preserved in this bone. PloS one, 17(10), e0269348.

Kanazawa, T., Gotoh, M., Ohta, K., Shiba, N., & Nakamura, K. I. (2014). Novel characteristics of normal supraspinatus insertion in rats: an ultrastructural analysis using three-dimensional reconstruction using focused ion beam/scanning electron microscope tomography. Muscles, ligaments and tendons journal, 4(2), 182.

Keen, I. P., White, G. W., & Fredericks, P. M. (1998). Characterization of fibers by Raman microprobe spectroscopy. Journal of Forensic Science, 43(1), 82-89.

Kent, D., Márquez-Grant, N., & Lane, D. (2022). The application of dual energy X-ray soil screening in forensic archaeology. Science & Justice.

Kumar, R., & Sharma, V. (2018). Chemometrics in forensic science. TrAC Trends in Analytical Chemistry, 105, 191-201.

Lepot, L., Vanhouche, M., Driessche, T. V., & Lunstroot, K. (2023). Interpol review of fibres and textiles 2019-2022. Forensic Science International: Synergy, 6, 100307.

Lucena, M. C., Lopes, K. P., Ayala, A. P., Vidal, L. M., Lopes, T. I., & Ricardo, N. M. (2023). The Use of Single Crystal X-ray Diffraction Technique for Characterization of 25I-NBOMe and 25R-NBOH (R= Cl, I, Br, Et) in Forensic Application. Journal of the Brazilian Chemical Society, 34, 641-652.

Magal, R. A., Reznikov, N., Shahar, R., & Weiner, S. (2014). Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading. Journal of Structural Biology, 186(2), 253-264.

Mahoney, C. M., Gillen, G., & Fahey, A. J. (2006). Characterization of gunpowder samples using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Forensic science international, 158(1), 39-51.

Maria, R., Ben-Zvi, Y., Rechav, K., Klein, E., Shahar, R., & Weiner, S. (2019). An unusual disordered alveolar bone material in the upper furcation region of minipig mandibles: a 3D hierarchical structural study. Journal of Structural Biology, 206(1), 128-137.

Marugán, F. R. (2021). A New Method of Forensic Archaeology. In Crime and Art (pp. 79-99). Springer, Cham.

Mistek, E., Halámková, L., Doty, K. C., Muro, C. K., & Lednev, I. K. (2016). Race differentiation by Raman spectroscopy of a bloodstain for forensic purposes. Analytical chemistry, 88(15), 7453-7456.

Morse, D., Crusoe, D., & Smith, H. G. (1976). Forensic archaeology. Journal of forensic science, 21(2), 323-332.

Munson, B. (1977). Chemical ionization mass spectrometry: ten years later. Analytical Chemistry, 49(9), 772A-775A.

Márquez-Grant, N., Robledo Acinas, M., & Sanchez-Sanchez, J. (2011). El papel de la arqueología en la investigación criminal. Revista de la Escuela de Medicina Legal, 16, 1-22.

Nazarian, A., & Presser, C. (2015). Forensic methodology for the thermochemical characterization of ANNM and ANFO homemade explosives. Thermochimica Acta, 608, 65-75.

Nycz, J. E., Malecki, G., Zawiazalec, M., Pazdziorek, T., & Skop, P. (2010). 1-Pentyl-3-(4-methoxy-1-naphthoyl) indole and 2-(2-methoxy-phenyl)-1-(1-pentyl-1H-indol-3-yl)-ethanone: X-ray structures and computational studies. Journal of Molecular Structure, 984(1-3), 125-130.

Oakley, K. (2005). Forensic archaeology and anthropology. Forensic science, medicine, and pathology, 1(3), 169-172.

Piga, G., Thompson, T. J., Malgosa, A., & Enzo, S. (2009). The potential of X‐ray diffraction in the analysis of burned remains from forensic contexts. Journal of Forensic Sciences, 54(3), 534-539.

Powers, N., & Sibun, L. (2013). Forensic archaeology. The Oxford Handbook of the Archaeology of the Contemporary World. Oxford University Press, Oxford, 40-53.

Raguin, E., Rechav, K., Shahar, R., & Weiner, S. (2021). Focused ion beam-SEM 3D analysis of mineralized osteonal bone: lamellae and cement sheath structures. Acta Biomaterialia, 121, 497-513.

Raguin, E., Rechav, K., Shahar, R., & Weiner, S. FIB-SEM 3D Analysis of Mineralized Osteonal Bone: Lamellae and Cement Sheath Structures. Available at SSRN 3677498.

Reznikov, N., Almany-Magal, R., Shahar, R., & Weiner, S. (2013). Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone, 52(2), 676-683.

Reznikov, N., Shahar, R., Weiner, S., 2014a. Bone hierarchical structure in three dimensions. Acta Biomaterialia 10,. 3815-3826

Robertson, J. (2010). Handbook of Forensic Anthropology and Archaeology

Saucedo, A. A. (2019). Arqueología forense y sus diálogos con la antropología social en el México de la guerra contra las drogas. ABYA-YALA: Revista sobre acesso á justiça e direitos nas Américas, 3(2), 73-93.

Schwemer, T., Rössler, T., Ahrens, B., Schäffer, M., Hasselbach-Minor, A., Pütz, M., ... & Zimmermann, R. (2017). Characterization of a heroin manufacturing process based on acidic extracts by combining complementary information from two-dimensional gas chromatography and high resolution mass spectrometry. Forensic Chemistry, 4, 9-18.

Schäffer, M., Gröger, T., Pütz, M., Dieckmann, S., & Zimmermann, R. (2012). Comparative analysis of the chemical profiles of 3, 4‐methylenedioxymethamphetamine based on comprehensive two‐dimensional gas chromatography–time‐of‐flight mass spectrometry (GC× GC‐TOFMS). Journal of Forensic Sciences, 57(5), 1181-1189.

Śmigiel-Kamińska, D., Pośpiech, J., Makowska, J., Stepnowski, P., Wąs-Gubała, J., & Kumirska, J. (2019). The identification of polyester fibers dyed with disperse dyes for forensic purposes. Molecules, 24(3), 613.

Summerscales, J., & Gwinnett, C. (2017). Forensic identification of bast fibres. Biocomposites for high-performance applications, 125-164.

Thompson, T. (2005). Heat-induced dimensional changes in bone and their consequences for forensic anthropology. Journal of Forensic Science, 50(5), JFS2004297-8.

Weiner, S., & Rechav, K. Three Dimensional Structures of the Inner and Outer Pig Petrous Bone Using Fib Sem: Implications for Development and Ancient DNA Preservation. Katya and boaretto, elisabetta and weiner, stephen, Three Dimensional Structures of the Inner and Outer Pig Petrous Bone Using Fib Sem: Implications for Development and Ancient DNA Preservation.

Wolstenholme, R. (2021). Raman Spectroscopy. Analytical Techniques in Forensic Science, 161-183.

Cómo citar
Ruiz Salgado, S., & Rodriguez Lugo, V. (2023). Arqueología Forense, Quimiometria y el Método Científico. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 10(10), 53-66.