Obtención del composito TiO2 – Fe2O3 por mecanosíntesis y su uso en la fotodegradación de contaminantes orgánicos con luz solar

Palabras clave: Anatasa, composito TiO2-Fe2O3, Contaminantes orgánicos, Fotocatálisis, Mecanosíntesis

Resumen

En este trabajo se investiga la obtención del composito TiO2-Fe2O3 por mecanosíntesis, usando óxido de titanio (TiO2), fase anatasa, y trióxido de hierro (Fe2O3), fase hematita, como precursores. También se investiga sobre el uso de este composito como fotocatalizador de la degradación de moléculas orgánicas utilizando luz solar natural. Por Difracción de rayos X y espectroscopía infrarroja se confirmó la formación del composito TiO2-Fe2O3. La caracterización de sus propiedades ópticas se realizó mediante espectroscopia de reflectancia difusa, mientras que su textura y morfología se investigó por la técnica BET y microscopia electrónica de barrido. Los resultados indicaron que el composito TiO2-Fe2O3 contiene grupos OH, los cuales junto con el valor de área superficial específica (66.59 m2·g-1) relativamente alto, su mesoporosidad, bajo valor del tamaño de cristalita y de la brecha energética prohibida, favorecieron su buena eficiencia fotocatalítica en la fotodegradación de azul de metileno (64.74%) y diclofenaco (81.85%) de soluciones acuosas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahmed, M. A., El-Katori, E. E., & Gharni, Z. H. (2013). Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol-gel method. Journal of Alloys and Compounds, 553, 19–29. https://doi.org/10.1016/j.jallcom.2012.10.038

Amaro-Medina, B. M., Martinez-Luevanos, A., Soria-Aguilar, M. D. J., Sanchez-Castillo, M. A., Estrada-Flores, S., & Carrillo-Pedroza, F. R. (2022). Efficiency of Adsorption and Photodegradation TiO2/Fe2O3 and Industrial Wastes in Cyanide Removal. Water, 14(1), 3502.

Bellardita, M., Di Paola, A., Megna, B., & Palmisano, L. (2016). Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Applied Catalysis B: Environmental Environmental, 201, 150–158. https://doi.org/10.1016/j.apcatb.2016.08.012

Bi, L., Chen, Z., Li, L., Kang, J., Zhao, S., Wang, B., Yan, P., Li, Y., Zhang, X., & Shen, J. (2021). Selective adsorption and enhanced photodegradation of diclofenac in water by molecularly imprinted TiO2. Journal of Hazardous Materials, 407(November 2020), 124759. https://doi.org/10.1016/j.jhazmat.2020.124759

Bouziani, A., Park, J., & Ozturk, A. (2020). Synthesis of α-Fe2O3/TiO2 heterogeneous composites by the sol-gel process and their photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112718. https://doi.org/10.1016/j.jphotochem.2020.112718

Bullen, J. C., Lapinee, C., Miller, L. A., Bullough, F., Berry, A. J., Najorka, J., Cibin, G., Vilar, R., & Weiss, D. J. (2022). Spectroscopic (XAS, FTIR) investigations into arsenic adsorption onto TiO2/Fe2O3 composites: Evaluation of the surface complexes, speciation and precipitation predicted by modelling. Results in Surfaces and Interfaces, 9, 100084.

Coronado, J. M., & Hernández-Alonso, M. D. (2013). The Keys of Success: TiO2 as a Benchmark Photocatalyst. In Design of Advanced Photocatalytic Materials for Energy and Environmental Applications (pp. 85–101).

Estrada-Flores, S., Martínez-Luévanos, A., Perez-Berumen, C. M., García-Cerda, L. A., & Flores-Guia, T. E. (2020). Relationship between morphology, porosity, and the photocatalytic activity of TiO2 obtained by sol–gel method assisted with ionic and nonionic surfactants. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 59(5), 209–218. https://doi.org/10.1016/j.bsecv.2019.10.003

Fang, X., Lu, G., Mahmood, A., Tang, Z., Liu, Z., Zhang, L., Wang, Y., & Sun, J. (2020). A novel ternary Mica/TiO2/Fe2O3 composite pearlescent pigment for the photocatalytic degradation of acetaldehyde. Journal of Photochemistry and Photobiology A: Chemistry, 400(February), 112617. https://doi.org/10.1016/j.jphotochem.2020.112617

Ghorai, T., Chakraborty, M., & Pramanik, P. (2011). Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis. Journal of Alloys and Compounds, 509, 8158–8164.

Hitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258(January), 110050. https://doi.org/10.1016/j.jenvman.2019.110050

Irshad, M., tul Ain, Q., Zaman, M., Aslam Zeeshan, M., Kousar, N., Asim, M., Rafique, M., Siraj, K., Tabish, A. N., Usman, M., Farooq, M. ul H., Assiri, M. A., & Imran, M. (2022). Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Advances, 12, 7009–7039. https://doi.org/10.1039/d1ra08185c

Kavitha, S., Ranjith, R., Jayamani, N., Vignesh, S., Palanivel, B., Djellabi, R., Bianchi, C. L., & Alharthi, F. A. (2021). Fabrication of visible-light-responsive TiO2/α-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water. J Mater Sci: Mater Electron.

Li, R., Jia, Y., Bu, N., Wu, J., & Zhen, Q. (2015). Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics. Journal of Alloys and Compounds, 643, 88–93. https://doi.org/10.1016/j.jallcom.2015.03.266

Liu, H., Zhang, Z., Wang, X., Nie, G., Zhang, J., Zhang, S., Cao, N., Yan, S., & Long, Y. (2018). Journal of Physics and Chemistry of Solids Highly flexible Fe2O3/TiO2 composite nano fi bers for photocatalysis and utraviolet detection. Journal of Physics and Chemistry Solids, 121(February), 236–246.

Lu, S., Meng, G., Wang, C., & Chen, H. (2021). Photocatalytic inactivation of airborne bacteria in a polyurethane foam reactor loaded with a hybrid of MXene and anatase TiO2 exposing {0 0 1} facets. Chemical Engineering Journal, 404(July 2020), 126526. https://doi.org/10.1016/j.cej.2020.126526

Payormhorm, J., Chuangchote, S., & Laosiripojana, N. (2017). CTAB-assisted sol-microwave method for fast synthesis of mesoporous TiO2 photocatalysts for photocatalytic conversion of glucose to value-added sugars. Materials Research Bulletin, 95, 546–555. https://doi.org/http://dx.doi.org/10.1016/j.materresbull.2017.08.016

Peñas-Garzón, M., Abdelraheem, W. H. M., Belver, C., Rodriguez, J. J., Bedia, J., & Dionysiou, D. D. (2021). TiO2-carbon microspheres as photocatalysts for effective remediation of pharmaceuticals under simulated solar light. Separation and Purification Technology, 275. https://doi.org/10.1016/j.seppur.2021.119169

Santana-Viera, S., Lara-Martín, P. A., & González-Mazo, E. (2023). High resolution mass spectrometry (HRMS) determination of drugs in wastewater and wastewater based epidemiology in Cadiz Bay (Spain). Journal of Environmental Management, 341(January). https://doi.org/10.1016/j.jenvman.2023.118000

Sarkar, S., Das, R., Choi, H., & Bhattacharjee, C. (2014). Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes - A short review. RSC Advances, 4(100), 57250–57266. https://doi.org/10.1039/c4ra09582k

Subramonian, W., Wu, T. Y., & Chai, S. (2017). Using one-step facile and solvent-free mechanochemical process to synthesize photoactive Fe2O3 -TiO2 for treating industrial wastewater. Journal of Alloys and Compounds, 695, 496–507.

Tallósy, S. P., Janovák, L., Nagy, E., Deák, Á., Juhász, Á., Csapó, E., Buzás, N., & Dékány, I. (2016). Adhesion and inactivation of Gram-negative and Gram-positive bacteria on photoreactive TiO2/polymer and Ag-TiO2/polymer nanohybrid films. Applied Surface Science, 371, 139–150. https://doi.org/10.1016/j.apsusc.2016.02.202

Yang, W., Wang, Z., Yang, B., Jiang, Y., Sun, M., Liu, X., Amin, B., Ge, G., Rodriguez, R. D., & Jia, X. (2021). Pesticide degradation on solid surfaces: a moisture dependent process governed by the interaction between TiO2 and H2O. New Journal of Chemistry, 45(26), 11803–11811. https://doi.org/10.1039/d1nj02368c

Yang, Z. P., & Zhang, C. J. (2010). Kinetics of photocatalytic reduction of Pb(II) on nanocrystalline TiO2 coatings: A quartz crystal microbalance study. Thin Solid Films, 518(21), 6006–6009. https://doi.org/10.1016/j.tsf.2010.06.041

Zhang, Y., Xu, M., Li, H., Ge, H., & Bian, Z. (2018). The enhanced photoreduction of Cr(VI) to Cr(III) using carbon dots coupled TiO2 mesocrystals. Applied Catalysis B: Environmental, 226(Vi), 213–219. https://doi.org/10.1016/j.apcatb.2017.12.053

Zheng, L., Xu, H., Pi, F., Zhang, Y., & Sun, X. (2016). Synthesis of Fe3O4@mTiO2 nanocomposites for the photocatalytic degradation of Monocrotophos under UV illumination. RSC Advances, 6(90), 87273–87281. https://doi.org/10.1039/c6ra13423h

Ghorai, T., Chakraborty, M., & Pramanik, P. (2011). Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis. Journal of Alloys and Compounds, 509, 8158–8164.

Publicado
2023-10-05
Cómo citar
Estrada-Flores, S., Martínez-Luévanos, A., & Aguilera-González, E. N. (2023). Obtención del composito TiO2 – Fe2O3 por mecanosíntesis y su uso en la fotodegradación de contaminantes orgánicos con luz solar. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 10(10), 83-91. https://doi.org/10.29057/aactm.v10i10.11422