Fungal biosynthesis of lanthanide-based nanoparticles for healthcare applications: a Review

Palabras clave: Biosynthesis, Green synthesis, elemental recycling, bio-recovery, lanthanide nanoparticles

Resumen

This article explores the use of fungi in the synthesis of lanthanide-based nanomaterials, demonstrating their innovative application as fungal agents in nanobiotechnology. The present review examines the crucial role of fungi in obtaining lanthanide-based nanostructures and their potential applications in biotechnology. It also discusses how these materials are used in antimicrobial coatings, labeling agents, and the bio-recovery of lanthanides from industrial waste and mineral resources using fungal organisms. Additionally, it stresses the importance of environmentally friendly synthesis methods and evaluating the toxicity of these materials to both environments and organisms. This work highlights the significance of interdisciplinary research bridging fungal biology with nanotechnology for a more sustainable future.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ansary, A. A., Syed, A., Elgorban, A. M., Bahkali, A. H., Varma, R. S., & Khan, M. S. (2022). Neodymium Selenide Nanoparticles: Greener Synthesis and Structural Characterization. Biomimetics, 7(4). https://doi.org/10.3390/biomimetics7040150

Arumugam, A., Karthikeyan, C., Haja Hameed, A. S., Gopinath, K., Gowri, S., & Karthika, V. (2015). Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering C, 49, 408–415. https://doi.org/10.1016/j.msec.2015.01.042

Bahaloo-Horeh, N., & Mousavi, S. M. (2022). A novel green strategy for biorecovery of valuable elements along with enrichment of rare earth elements from activated spent automotive catalysts using fungal metabolites. Journal of Hazardous Materials, 430. https://doi.org/10.1016/j.jhazmat.2022.128509

Dhall, A., & Self, W. (2018). Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. In Antioxidants (Vol. 7, Issue 8). MDPI. https://doi.org/10.3390/antiox7080097

Divya, T., Sridhar, P., Vishalee, S., Palani, P., & Venkatachalam, K. (2024). Biosynthesis of La/NiO Nanoparticles: Study of Photocatalytic Degradation of Anionic and Cationic Dye, and Their Antibacterial Activity. Iranian Journal of Science. https://doi.org/10.1007/s40995-024-01611-1

Feng, Y., Marusak, K. E., You, L., & Zauscher, S. (2018). Biosynthetic transition metal chalcogenide semiconductor nanoparticles: Progress in synthesis, property control and applications. Current Opinion in Colloid and Interface Science, 38, 190–203. https://doi.org/10.1016/j.cocis.2018.11.002

Fichtner, J., Garlyyev, B., Watzele, S., El-Sayed, H. A., Schwämmlein, J. N., Li, W. J., Maillard, F. M., Dubau, L., Michalička, J., Macak, J. M., Holleitner, A., & Bandarenka, A. S. (2019). Top-Down Synthesis of Nanostructured Platinum-Lanthanide Alloy Oxygen Reduction Reaction Catalysts: Pt x Pr/C as an Example. ACS Applied Materials and Interfaces, 11(5), 5129–5135. https://doi.org/10.1021/acsami.8b20174

Gopinath, K., Chinnadurai, M., Devi, N. P., Bhakyaraj, K., Kumaraguru, S., Baranisri, T., Sudha, A., Zeeshan, M., Arumugam, A., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., & Benelli, G. (2017). One-Pot Synthesis of Dysprosium Oxide Nano-Sheets: Antimicrobial Potential and Cyotoxicity on A549 Lung Cancer Cells. Journal of Cluster Science, 28(1), 621–635. https://doi.org/10.1007/s10876-016-1150-4

Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S., & Arumugam, A. (2015). Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. Journal of Nanostructure in Chemistry, 5(3), 295–303. https://doi.org/10.1007/s40097-015-0161-2

Gutiérrez Rodelo, C., Salinas, R. A., Armenta Jaime, E., Armenta, S., Galdámez-Martínez, A., Castillo-Blum, S. E., Astudillo-de la Vega, H., Nirmala Grace, A., Aguilar-Salinas, C. A., Gutiérrez Rodelo, J., Christie, G., Alsanie, W. F., Santana, G., Thakur, V. K., & Dutt, A. (2022). Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coordination Chemistry Reviews, 457(xxxx), 214402. https://doi.org/10.1016/j.ccr.2021.214402

Horiike, T., Kiyono, H., & Yamashita, M. (2016). Penidiella sp. strain T9 is an effective dysprosium accumulator, incorporating dysprosium as dysprosium phosphate compounds. Hydrometallurgy, 166, 260–265. https://doi.org/10.1016/j.hydromet.2016.07.014

Huang, H., Dong, C., Feng, W., Wang, Y., Huang, B., & Chen, Y. (2022). Biomedical engineering of two-dimensional MXenes. Advanced Drug Delivery Reviews, 184, 114178. https://doi.org/10.1016/j.addr.2022.114178

Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38(4), 545–560. https://doi.org/10.1007/s10529-015-2026-7

Iram, S., Khan, S., Ansary, A. A., Arshad, M., Siddiqui, S., Ahmad, E., Khan, R. H., & Khan, M. S. (2016). Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 168, 123–131. https://doi.org/10.1016/j.saa.2016.05.053

Jan, H., Khan, M. A., Usman, H., Shah, M., Ansir, R., Faisal, S., Ullah, N., & Rahman, L. (2020). TheAquilegia pubiflora(Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Advances, 10(33), 19219–19231. https://doi.org/10.1039/d0ra01971b

Jia, D. (2010). Synthesis YPO4: Eu3+ nanophosphor from fungi. Electrochemical and Solid-State Letters, 13(5), 3–8. https://doi.org/10.1149/1.3322297

Kang, X., Csetenyi, L., Gao, X., & Gadd, G. M. (2022). Solubilization of struvite and biorecovery of cerium by Aspergillus niger. Applied Microbiology and Biotechnology, 106(2), 821–833. https://doi.org/10.1007/s00253-021-11721-0

Khan, S. A., & Ahmad, A. (2013). Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Materials Research Bulletin, 48(10), 4134–4138. https://doi.org/10.1016/j.materresbull.2013.06.038

Khan, S. A., Gambhir, S., & Ahmad, A. (2014). Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein Journal of Nanotechnology, 5(1), 249–257. https://doi.org/10.3762/bjnano.5.27

Komal, R., Uzair, B., Sajjad, S., Butt, S., Kanwal, A., Ahmed, I., Riaz, N., Leghari, S. A. K., & Abbas, S. (2020). Skirmishing MDR strain of Candida albicans by effective antifungal CeO2 nanostructures using Aspergillus terreus and Talaromyces purpurogenus. Materials Research Express, 7(5), 0–9. https://doi.org/10.1088/2053-1591/ab8ba2

Manoj Kumar, K. A., Hemananthan, E., Renuka Devi, P., Vignesh Kumar, S., & Hariharan, R. (2020). Biogenic synthesis, characterization and biological activity of lanthanum nanoparticles. Materials Today: Proceedings, 21, 887–895. https://doi.org/10.1016/j.matpr.2019.07.727

Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., Anwaar, S., Abbas, F., & Jan, T. (2016). Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. International Journal of Nanomedicine, 11, 5015–5025. https://doi.org/10.2147/IJN.S113508

Munusamy, S., Bhakyaraj, K., Vijayalakshmi, L., Stephen, A., & Narayanan, V. (2014). Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. International Journal of Innovative Research in Science & Engineering, 2(1), 318–323

Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., Faisal, S., Mabood, Z. U., Hano, C., & Abbasi, B. H. (2020). Green synthesis of cerium oxide nanoparticles (Ceo2 nps) and their antimicrobial applications: A review. International Journal of Nanomedicine, 15, 5951–5961. https://doi.org/10.2147/IJN.S255784

Nasrin, T., Roy, S., & Das, T. K. (2014). Aspergillus Foetidus Mediated Biosynthesis of CdS Nano Particles and Its Characterization. International Journal of Innovative Research in Science & Engineering, 2(Mic), 633–639

Nath, P. C., Ojha, A., Debnath, S., Sharma, M., Sridhar, K., Nayak, P. K., & Inbaraj, B. S. (2023). Biogeneration of Valuable Nanomaterials from Agro-Wastes: A Comprehensive Review. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020561

Nazaripour, E., Mousazadeh, F., Doosti Moghadam, M., Najafi, K., Borhani, F., Sarani, M., Ghasemi, M., Rahdar, A., Iravani, S., & Khatami, M. (2021). Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorganic Chemistry Communications, 131. https://doi.org/10.1016/j.inoche.2021.108800

Patel, A., Enman, J., Gulkova, A., Guntoro, P. I., Dutkiewicz, A., Ghorbani, Y., Rova, U., Christakopoulos, P., & Matsakas, L. (2021). Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. Chemosphere, 263. https://doi.org/10.1016/j.chemosphere.2020.128306

Rajan, A. R., Rajan, A., Philip, D., & John, A. (2019). Antifungal activities of biogenic Au and CeO2 nanoparticles. AIP Conference Proceedings, 2162(October). https://doi.org/10.1063/1.5130220

Sharmila, G., Muthukumaran, C., Saraswathi, H., Sangeetha, E., Soundarya, S., & Kumar, N. M. (2019). Green synthesis, characterization and biological activities of nanoceria. Ceramics International, 45(9), 12382–12386. https://doi.org/10.1016/j.ceramint.2019.03.164

Simões, M. F., Ottoni, C. A., & Antunes, A. (2020). Mycogenic metal nanoparticles for the treatment of mycobacterioses. Antibiotics, 9(9), 1–21. https://doi.org/10.3390/antibiotics9090569

Tong, Y. J., Yu, L. D., Li, N., Shen, M., Peng, X., Yang, H., Ye, Y. X., Zhu, F., Pawliszyn, J., Xu, J., & Ouyang, G. (2022). Novel lanthanide nanoparticle frameworks for highly efficient photoluminescence and hypersensitive detection. Chemical Science, 13(46), 13948–13955. https://doi.org/10.1039/d2sc05915k

Uddandarao, P., Balakrishnan, R. M., Ashok, A., Swarup, S., & Sinha, P. (2019). Bioinspired ZnS:Gd Nanoparticles Synthesized from an Endophytic Fungi Aspergillus flavus for Fluorescence-Based Metal Detection. Biomimetics, 4(1), 11. https://doi.org/10.3390/biomimetics4010011

Venkatesh, K. S., Gopinath, K., Palani, N. S., Arumugam, A., Jose, S. P., Bahadur, S. A., & Ilangovan, R. (2016). Plant pathogenic fungus: F. solani mediated biosynthesis of nanoceria: Antibacterial and antibiofilm activity. RSC Advances, 6(48), 42720–42729. https://doi.org/10.1039/c6ra05003d

Wen, H., & Wang, F. (2013). Lanthanide-Doped Nanoparticles. Synthesis, Property, and Application. In Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications (Second Edition). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-407796-6.00004-X

Zhang, B., Yang, W., Yu, J., Guo, W., Wang, J., Liu, S., Xiao, Y., & Shi, D. (2017). Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging. Advanced Healthcare Materials, 6(4). https://doi.org/10.1002/adhm.201600865

Zhang, Q., Li, X., Ma, Q., Zhang, Q., Bai, H., Yi, W., Liu, J., Han, J., & Xi, G. (2017). A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nature Communications, 8(105), 1–9. https://doi.org/10.1038/ncomms14903

Zielonka, A., & Klimek-Ochab, M. (2017). Fungal synthesis of size-defined nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4). https://doi.org/10.1088/2043-6254/aa84d4

Publicado
2024-10-05
Cómo citar
Armenta, S., Armenta Jaime, E., Galdámez Martínez, A., Rivera Román, Ángeles A., Rodríguez Lugo, V., & Arce Cervantes, O. (2024). Fungal biosynthesis of lanthanide-based nanoparticles for healthcare applications: a Review. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 11(11), 66-75. https://doi.org/10.29057/aactm.v11i11.13084