Efecto de nanopartículas híbridas SiO₂-SiC en la resistencia mecánica del concreto
DOI:
https://doi.org/10.29057/aactm.v12i12.14849Palabras clave:
Nanopartículas híbridas, Concreto, Resistencia mecánica, Zona interfacial, AditivoResumen
Este estudio evalúa el efecto de la incorporación de nanopartículas híbridas de óxido de silicio y carburo de silicio (SiO₂-SiC) en la resistencia mecánica del concreto. Las nanopartículas fueron sintetizadas mediante el método Sol-Gel y dosificadas como sustituto parcial del cemento en proporciones de 10, 20 y 30 mL por cada 500 g. Se elaboraron especímenes cilíndricos para ensayos de compresión y tracción indirecta conforme a normas ASTM. Los resultados mostraron incrementos de hasta 10.4% en resistencia a la compresión y 7.0% en tracción indirecta respecto al concreto de referencia. La mezcla con 20 mL presentó el mejor desempeño, asociado a una densificación de la matriz cementante y una interfaz agregado-pasta más homogénea. El análisis de micrografías confirmó una reducción en la propagación de fisuras en las mezclas modificadas. Se concluye que el uso de nanopartículas híbridas SiO₂-SiC es una estrategia viable para mejorar el comportamiento estructural del concreto sin comprometer su trabajabilidad.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
ASTM C192/C192M, (2014). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, West Conshohocken, PA.
ASTM C31/C31M, (2001). Standard Practice for Making and Curing Concrete Test Specimens in the Field. ASTM International, West Conshohocken, PA.
ASTM C39/C39M, (2018). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA.
ASTM C496/C496M, (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA.
Bao, J., Zheng, R., Zhang, P., Cui, Y., Xue, S., Song, Q., Ma, Y., (2023). Thermal resistance, water absorption and microstructure of high-strength self-compacting lightweight aggregate concrete (HSSC-LWAC) after exposure to elevated temperatures. Construction and Building Materials 365, 130071.DOI: 10.1016/j.conbuildmat.2022.130071
Cwirzen, A., Penttala, V., (2021). Influence of nano-silica on the properties of high-performance concrete. Construction and Building Materials 304, 124699.DOI: 10.1016/j.conbuildmat.2021.124699
Deng, X., Wang, L., Zhang, Y., (2021). Effect of silicon carbide nanoparticles on cement-based materials: A review. Journal of Materials Science 56, 1245–1263.DOI: 10.1007/s10853-020-05319-8
Du, H., Du, S., Liu, X., (2014). Durability performances of concrete with nano-silica. Construction and Building Materials 73, 705–712. DOI: 10.1016/j.conbuildmat.2014.10.007
Duru, I. P., Ozugurlu, E., Arda, L., (2019). Size effect on magnetic properties of Zn₀.₉₅₋ₓMgₓNi₀.₀₅O nanoparticles by Monte Carlo simulation. Ceramics International 45(5), 5259–5265. DOI: 10.1016/j.ceramint.2018.11.065
Gao, H., Li, Y., Zhang, R., (2023). Enhanced mechanical and durability properties of concrete with hybrid nano-SiO₂/SiC particles. Cement and Concrete Composites 142, 105894. DOI: 10.1016/j.cemconcomp.2023.105894
García-Taengua, E., Campoy, M., Reig, L., (2021). Advances in concrete technology: Nano-additives and high-performance materials. Materials Today Advances 10, 100175.DOI: 10.1016/j.mtadv.2021.100175
Ghiasvand, H., Bastami, M., Farokhzad, R., (2022). Enhancing the internal curing process of self-compacting concrete containing lightweight aggregate and chemical additives. European Journal of Environmental and Civil Engineering 26(16), 8414–8432. DOI: 10.1080/19648189.2021.1925417
Goyal, R. K., (2017). Nanomaterials and nanocomposites: synthesis, properties, characterization techniques, and applications. CRC Press, Boca Raton, FL.
Kim, H., (2019). Effect of nano-silica on hydration and microstructure of cementitious materials. Construction and Building Materials 225, 564–577.DOI: 10.1016/j.conbuildmat.2019.07.015
Li, Y., Wang, L., Gao, H., (2022). Pozzolanic activity and microstructure enhancement of nano-SiO₂ in cement-based materials. Journal of Building Engineering 45, 103595. DOI: 10.1016/j.jobe.2021.103595
Mehta, P. K., Monteiro, P. J. M., (2020). Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education, New York.
Morsy, M. S., Alsayed, S. H., Aqel, M., (2010). Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar. International Journal of Civil & Environmental Engineering IJCEE-IJENS 10(01), 23–27.
Nazari, A., Riahi, S., (2011). The effect of TiO₂ nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete. Materials Science and Engineering: A 528, 756–763.
DOI: 10.1016/j.msea.2010.09.074
Orakzai, M. A., (2021). Hybrid effect of nano-alumina and nano-titanium dioxide on mechanical properties of concrete. Case Studies in Construction Materials 14, e00483. DOI: 10.1016/j.cscm.2020.e00483
Siamardi, K., (2022). Optimization of fresh and hardened properties of structural lightweight self-compacting concrete mix design using response surface methodology. Construction and Building Materials 317, 125928. DOI: 10.1016/j.conbuildmat.2021.125928
Signorini, C., Sola, A., Nobili, A., Siligardi, C., (2019). Lime-cement textile reinforced mortar (TRM) with modified interphase. Journal of Applied Biomaterials & Functional Materials 17(1), 2280800019827823. DOI: 10.1177/2280800019827823
Sikora, P., Elrahman, M., Stephan, D., (2022). Nano-engineered cementitious materials: A review. Journal of Building Engineering 52, 104275. DOI: 10.1016/j.jobe.2022.104275
Zhan, P. M., He, Z. H., Ma, Z. M., Liang, C. F., Zhang, X. X., Abreham, A. A., Shi, J. Y., (2020). Utilization of nano-metakaolin in concrete: A review. Journal of Building Engineering 30, 101259. DOI: 10.1016/j.jobe.2020.101259
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Serafín Hernández Hidalgo, Ivan Erick Castañeda Robles, Abraham Leonel López León, Luis Daimir López León

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.








