Lixiviación eficiente de Cu, Ni y Zn en PCBs, utilizando un sistema de ácido sulfúrico-ozono

Autores/as

DOI:

https://doi.org/10.29057/aactm.v12i12.15257

Palabras clave:

Chatarra electrónica, lixiviación, ácido sulfúrico-ozono, energías de activación, orden de reacción, difusión, Cu, Ni, Zn

Resumen

El acelerado consumo de bienes actualmente, ha incrementado la cantidad de desechos en el mundo, especialmente desechos electrónicos, lo cual hace del reuso y reciclaje un factor importante para remediar la contaminación. Este estudio investiga la lixiviación de residuos de chatarra electrónica en medio H2SO4-O3. Los resultados muestran que la cinética de lixiviación de Cu, Ni y Zn está controlada por la difusión. Los valores de energía de activación (Ea) son 0.815, 3.42 y 0.171 kJ/mol para Cu, Ni y Zn, respectivamente. De igual modo, los órdenes de reacción son prácticamente 0 para los tres metales (-0.049 Cu, 0.14 Ni, y -0.0181 Zn), sugiriendo que la reacción es fácil de iniciar y puede ser controlada por difusión o por un paso limitante que no involucra la concentración de los reactantes. Por lo tanto, estos resultados indican que la lixiviación es un proceso eficiente para recuperar metales contenidos en residuos de la chatarra electrónica. Las máximas recuperaciones encontradas, fueron de 96.5 % de Cu, 98.67 % de Ni y 98.10 % de Zn.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
38%
33%
Días hasta la publicación 
128
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Abkari, S. and Ahmadi, A. Recovery of Copper from a Mixture of Printed Circuit Boards (PCBs) and Sulphidic Tailings Using Bioleaching and Solvent Extraction Processes. Chem. Eng. Process. 2019, 142, 107584. DOI: 10.1016/j.cep.2019.107484.

Arshadi, M.; Nili, S.; Yaghmaei, S. Ni and Cu Recovery by Bioleaching from the Printed Circuit Boards of Mobile Phones in Non-Conventional Medium. J. Environ. Manage. 2019, 250, 109502. DOI: 10.1016/j.envman.2019.109502.

Baldé, C. P.; Kuehr, R.; Yamamoto, T.; McDonald, R.; D’Angelo, E.; Althaf, S.; ... & Wagner, M. (2024). Global e-waste monitor 2024. https://ewastemonitor.info/the-global-e-waste-monitor-2024/

Calgaro, C.O.; Schlemmer, D.F.; Da, S.M.; Maziero, E.V.; Tanabe, E.H.; Bertuol, D.A. Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Manag. 2015, 45, 289–297. DOI: 10.1016/j.wasman.2015.05.017.

de Andrade, L.M.; de Carvalho, M.A.; Kohler, C.M.P.; Romano, E.D.C.; and Soares, T.J.A. Recovery of Copper and Silver of Printed Circuit Boards from Obsolete Computers by One-Step Acid Leaching. Detritus, 2021, 14, 86-91. DOI: 10.31025/2611-4135/2021.14056.

Dinkar, O.S.; Rani, K.; Parween, R.; Panda, R.; Sharma, A.; Aditi, A.; Ambade, B.; Jha, M.K. Recovery of Non-Ferreous (Cu & Ni) and Precious (Au) Metals from Waste Random Access Memory (RAM). Miner. Process. Extract. Metall. Review. 2025, 1-13. DOI: 10.1080/08827508.2025.2496515.

Han, Y.; Yi, X.; Wang, R.; Huang, J.; Chen, M.; Sun, Z.; Sun, S.; Shu, J. Copper Extraction from Waste Printed Circuit Boards by Glycine. Sep. Purif. Technol. 2020, 253, 117463. DOI: 10.1016/j.seppur.2020.117463.

Hao, J.; Wang, X.; Wang, Y.; Wu, F.; and Guo F. Optimizing the Leaching Parameters and Studying the Kinetics of Copper Recovery from Waste Printed Circuit Boards. ACS OMEGA, 2022, 7, 3689-3699. DOI: 10.1021/acsomega.1c06173.

Huang, K.; Guo, J.; Xu, Z. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. J. Hazard. Mater. 2009, 164, 399–408. DOI: 10.1016/j.hazmat.2008.08.051.

Ishak, E. H. K., Ismail, S., & Razak, M. I. A. Recovery of copper and valuable metals from E-waste via hydrometallurgical method. Materials Today: Proceedings, 2022, 66, 3077–3081. DOI: 10.1016/j.matpr.2022.07.395.

Jahdao, P.; Chauhan, G.; Pant, K.K.; Nigam, K.D.P. Greener Approach for the Extraction of Copper Metal From Electronic Waste. Waste Manage. 2016, 57, 102-112. DOI: 10.1016/j.wasman.2015.11.023.

Jadhao, P.R.; Pandey, A.; Pant, K.K.; Nigam, K.D.P. Efficient Recovery of Cu, and Ni from WPCB via Alkali Leaching Approach. J. Environ. Manage. 2021, 296, 113154. DOI: 10.1016/j.envman.2021.113154.

Kumari, S.; Panda, R.; Prasad, R.; Alorro, R. D.; & Jha, M. K. Sustainable Process to Recover Metals from Waste PCBs Using Physical Pre-Treatment and Hydrometallurgical Techniques. Sustainability, 2024, 16(1), 418. DOI: 10.3390/su16010418.

Lach, M.; Szwech, M.; Kotarba, M. & Jakubowska, M. Two-Stage Leaching of PCBs Using Sulfuric and Nitric Acid with the Addition of Hydrogen Peroxide and Ozone. Materials, 2024, 17(1), 219. DOI: 10.3390/ma17010219.

Lin, M.; Huang, Z.; Yuan, Z.; Fu, Y.; Hu, J.; Xu, Z.; Ruan, J. Mechanism of Gold Cyanidation in Bioleaching of Precious Metals from Waste Printed Circuit Boards. ACS Sustainable Chem. Eng. 2020, 8, 18975-18981. DOI: 10.1021/acssuschemeng.0c06822.

Li, H.; Eksteen, J.; Oraby, E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Res. Conserv. Recycl. 2018, 139, 122-139. DOI: 10.1016/j.resconrec.2018.08.07.

Lin, M.; Qiu, R.; Fu, Y.; Hu, J.; Ruan, J. Optimizing Conditions of Key Factors in FI Uencing CN A Producing Ability of Pseudomonas Bio Fi Lm to Leach Ag from Waste Printed Circuit Boards. J. Cleaner Prod. 2021, 288, 125641. DOI: 10.1016/j.jclepro.2020.125641.

Liu, Q.; Bai, J.-f.; Gu, W.-h.; Peng, S.-j.; Wang, L.-c.; Wang, J.-w.; Li, H.-x. Leaching of Copper from Waste Printed Circuit Boards Using Phanerochaete Chrysosporim Fungi. Hydrometallurgy, 2020, 196, 105421. DOI: 10.1016/j.hydromet.2020.105421.

Martinez-Ballesteros, G.; Valenzuela-Garcia, J.L.; Gomez-Alvarez, A.; Encinas-Romero, M.A.; Mejia-Zamudio, F.A. & Rosas-Durazo, A.D.J. Base metals extraction from printed circuit boards by pressure acid leaching. Minerals, 2023, 13(1), 98. DOI: 10.3390/min13010098.

Massinaei, M.; Arefizadeh, A.; Moghaddam, Z. Hybrid flotation-leaching strategy for sulfur removal from coal: experimental insights and process development. Can. Metall. Quart. 2025, 212(4), 617-630. DOI: 10.1080/00084433.2025.2508628.

Pinho, S.C.; Ferraz, C.A. & Almeida, M.F. Copper recovery from printed circuit boards using ammonia–ammonium sulphate system: A sustainable approach. Waste and Biomass Valorization, 2023, 14(5), 1683-1691. DOI: 10.1007/s12649-022-01953-0.

Vardanyan, A.; Vardanyan, N.; Abrahamyan, N.; Aatach, M.; & Gaydardzhiev, S. Sequential biologically assisted extraction of Cu and Zn from printed circuit boards (PCB). International Journal of Environmental Studies. 2022, 81(4), pp. 1756-1771. DOI: 10.1080/00207233.2022.2126122.

Wang, J.; Chen, S.; Zeng, X.; Huang, J.; Liang, Q.; Shu, J.; Chen, M.; Xiao, Z.; Zhao, H.; Sun, Z. Recovery of High Purity Copper from Waste Printed Circuit Boards of Mobile Phones by Slurry Electrolysis with Ammonia-Ammonium System. Sep. Purif. Technol. 2021, 275, 119180. DOI: 10.1016/j.seppur.2021.119180.

Wei, X.; Liu, D.; Huang, W.; Lei, Z. Simultaneously Enhanced Cu Bioleaching from E-Wastes and Recovered Cu Ions by Direct Current Electric Field in a Bioelectrical Reactor. Bioresour. Technol. 2019, 298, 122566. DOI: 10.1016/j.biortech.2019.122566.

Xiu, F.R.; Qi, Y.; Zhang, F.S. Co-Treatment of Waste Printed Circuit Boards and Polyvinyl Chloride by Subcritical Water Oxidation: Removal of Brominated Flame Retardants and Recovery of Cu and Pb. Chem. Eng. Process. 2014, 237, 242-249. DOI: 10.1016/j.cej/2013.10.026.

Zhao, J.; Liu, Z.; He, C.; Yang, Y.; Li, J.; Fujita, T.; Wang, G. & Shen, F. Improved leaching of Cu, Sn, Pb, Zn, and Al from waste printed circuit boards by electro-generated Cl2 in HCl solution. Waste Manage. 2022, 153, 386-396. DOI: 10.1016/j.wasman.2022.09.022.

Zhu, J.; Huang, Z.; Qin, B.; Tang, Y.; Ruan, J.; Xu, Z. An Energy-Saving and Environmental-Friendly Technology for Debromination of Plastic Waste: Novel Models of Heat Transfer and Movememnt Behavior of Bromine. J. Hazard. Mater. 2022, 421, 126814. DOI: 10.1016/j.jhazmat.2021.126814.

Descargas

Publicado

2025-10-05

Cómo citar

Gama Juárez, C. O., Salinas Maldonado, R. G., García Cerón, A., Flores Badillo, J., Hernández-Ávila, J., & Saldana, M. (2025). Lixiviación eficiente de Cu, Ni y Zn en PCBs, utilizando un sistema de ácido sulfúrico-ozono. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 12(12), 54–60. https://doi.org/10.29057/aactm.v12i12.15257