Generación de energía a partir de residuos minero metalúrgicos: una alternativa sostenible
DOI:
https://doi.org/10.29057/aactm.v12i12.15258Palabras clave:
Jarosita industrial, baterías, generación de energía, reaprovechamiento de residuosResumen
Los desechos minero metalúrgicos, constituyen un impacto medioambiental negativo en las zonas donde se almacenan. En busca de disminuir su impacto, y ya que estos residuos aún tienen propiedades fisicoquímicas y mineralógicas que pueden ser aprovechadas, de este modo en este trabajo se propone su uso como materia prima para la generación de energía. Es por ello, que se realizaron las evaluaciones del potencial eléctrico mediante diferentes ensayos, en los que se encontraron la concentración para su optimización y las curvas de descarga para identificar así su rendimiento. Los resultados más importantes encontrados, indican que al construir un sistema con este residuo, se puede generar la energía suficiente como para encender un dispositivo que requiera de 1.5 V. De este modo, se puede concluir que el reaprovechamiento de desechos de la industria del zinc, puede generar energía y ser el punto de partida para posteriores estudios relacionados con la eficiencia y rendimiento de este tipo de dispositivos.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Amrani, M., Taha, Y., Haloui, Y. El, Benzaazoua, M., & Hakkou, R. (2020). Sustainable reuse of coal mine waste: Experimental and economic assessments for embankments and pavement layer applications in morocco. Minerals, 10(10), 1–17. DOI: 10.3390/min10100851
Beltran, H., Sansano, E., & Pecht, M. (2023). Machine learning techniques suitability to estimate the retained capacity in lithium-ion batteries from partial charge/discharge curves. Journal of Energy Storage, 59. DOI: 10.1016/j.est.2022.106346
Cerecedo-Sáenz, E., Hernández-Lazcano, E., González-Bedolla, M. J., Hernández-Ávila, J., Rosales-Ibáñez, R., Gutiérrez-Amador, M. del P., Sánchez-Castillo, A., Arenas-Flores, A., & Salinas-Rodríguez, E. (2022). Synthesis, Characterization and Decomposition of Potassium Jarosite for Adsorptive As(V) Removal in Contaminated Water: Preliminary Study. International Journal of Environmental Research and Public Health, 19(23). DOI: 10.3390/ijerph192315912
Cruells, M., & Roca, A. (2022). Jarosites: Formation, Structure, Reactivity and Environmental. In Metals (Vol. 12, Issue 5). MDPI. DOI: 10.3390/met12050802
Ding, Y. L., Wen, Y., Chen, C. C., Van Aken, P. A., Maier, J., & Yu, Y. (2015). Nanosheets of earth-abundant jarosite as novel anodes for high-rate and long-life lithium-ion batteries. ACS Applied Materials and Interfaces, 7(19), 10518–10524. DOI: 10.1021/acsami.5b01992
El Aallaoui, A., El Ghorfi, M., Elghali, A., Taha, Y., Zine, H., Benzaazoua, M., & Hakkou, R. (2024). Investigating the reprocessing potential of abandoned zinc-lead tailings ponds: A comprehensive study using physicochemical, mineralogical, and 3D geometallurgical assessments. Minerals Engineering, 209. DOI: 10.1016/j.mineng.2024.108634
El Machi, A., Mabroum, S., Taha, Y., Tagnit-Hamou, A., Benzaazoua, M., & Hakkou, R. (2021). Use of flint from phosphate mine waste rocks as an alternative aggregates for concrete. Construction and Building Materials, 271. DOI: 10.1016/j.conbuildmat.2020.121886
Flores Badillo, J., Hernández Ávila, J., Patiño Cardona, F., Trápala Pineda, N. Y., & Ostos Santos, J. A. (2014). Developing alternative building material from mining waste. Advanced Materials Research, 976, 202–206. DOI: 10.4028/www.scientific.net/AMR.976.202
González-de-la-Fuente, A., López-León, L. D., Volpi-León, V., Correa-Castro, Y. P., Lizárraga-Mendiola, L., & Castañeda-Robles, I. E. (2023). Utilización de residuos mineros en concreto permeable como alternativa de construcción sostenible. Pädi. DOI: 10.29057/icbi.v12i23.11521
Grigg, A. R. C., Notini, L., Kaegi, R., ThomasArrigo, L. K., & Kretzschmar, R. (2024). Aluminium substitution affects jarosite transformation to iron oxyhydroxides in the presence of aqueous Fe(II). Geochimica et Cosmochimica Acta, 374, 72–84. DOI: 10.1016/j.gca.2024.04.008
Grigg, A. R. C., Wisawapipat, W., Barmettler, K., Schulz, K., Notini, L., ThomasArrigo, L. K., & Kretzschmar, R. (2024). Stability and transformation of jarosite and Al-substituted jarosite in an acid sulfate paddy soil under laboratory and field conditions. Geochimica et Cosmochimica Acta. DOI: 10.1016/j.gca.2024.07.026
Hernández-Lazcano, E., Cerecedo-Sáenz, E., Hernández-ávila, J., Toro, N., Karthik, T. V. K., Mendoza-Anaya, D., Fernández-García, M. E., Rodríguez-Lugo, V., & Salinas-Rodríguez, E. (2021). Synthesis of hydronium-potassium jarosites: The effect of ph and aging time on their structural, morphological, and electrical properties. Minerals, 11(1), 1–15. DOI: 10.3390/min11010080
Jin, X., Guo, C., Huang, Q., Tao, X., Li, X., Xie, Y., Dang, Z., Zhou, J., & Lu, G. (2024). Arsenic redistribution associated with Fe(II)-induced jarosite transformation in the presence of polygalacturonic acid. Science of the Total Environment, 935. https:DOI: j.scitotenv.2024.173444
Kalyani, N. T., Dhoble, S. J., Vengadaesvaran, B., & Arof, A. K. (2021). Sustainability, recycling, and lifetime issues of energy materials. In Energy Materials: Fundamentals to Applications (pp. 581–601). Elsevier. DOI: 10.1016/B978-0-12-823710-6.00015-7
Li, Z., & Yu, C. (2024a). Metal-air battery. In Nanostructured Materials (pp. 249–256). Elsevier. DOI: 10.1016/b978-0-443-19256-2.00019-3
Li, Z., & Yu, C. (2024b). Metal-ion battery. In Nanostructured Materials (pp. 237–242). Elsevier. DOI: 10.1016/b978-0-443-19256-2.00020-x
Makhathini, T. P., Bwapwa, J. K., & Mtsweni, S. (2023). Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review. In Sustainability (Switzerland) (Vol. 15, Issue 3). MDPI. DOI: 10.3390/su15032518
Nagde, K. R., & Dhoble, S. J. (2021). Li-S ion batteries: A substitute for Li-ion storage batteries. In Energy Materials: Fundamentals to Applications (pp. 335–371). Elsevier. DOI: 10.1016/B978-0-12-823710-6.00008-X
Rosen, M. A., & Farsi, A. (2023). Introduction to battery technology. In Battery Technology (pp. 1–38). Elsevier. DOI: 10.1016/b978-0-443-18862-6.00002-1
Runkel, M., Hammerschmidt, J., Wrobel, M., & Calvo, J. (2023). Finding New Life for Tailings: Sustainable Technology for Co, Cu, Ni, and Zn Production. In Proceedings of the 62nd Conference of Metallurgists, COM 2023 (pp. 919–926). Springer Nature Switzerland. DOI: 10.1007/978-3-031-38141-6_116
Salinas, E., Roca, A., Cruells, M., Patino, F., & Cordoba, D. A. (2001). Characterization and alkaline decomposition-cyanidation kinetics of industrial ammonium jarosite in NaOH media. In Hydrometallurgy (Vol. 60). www.elsevier.nlrlocaterhydromet
Salinas, E., Vargas, M., Flores-Badillo, J., Hernández, J., Salinas-Rodríguez, E., Flores-Badillo, J., Hernández-Ávila, J., Vargas-Ramírez, M., Flores-Hernández, J., Rodríguez-Lugo, V., Cerecedo-Sáenz, E., Carr Apan -Tepeapulco km, H., Las Peñitas, C. C., & México, H. (2017). Design and production of a new construction material (BRICKS) using mining tailings ijesrt international journal of engineering sciences & research technology design and production of a new construction material (BRICKS), using mining tailings. © International Journal of Engineering Sciences & Research Technology. DOI: 10.5281/zenodo.809079
Sandineni, P., Yaghoobnejad Asl, H., & Choudhury, A. (2016). Kagomé lattices as cathode: Effect of particle size and fluoride substitution on electrochemical lithium insertion in sodium- and ammonium Jarosites. Journal of Solid State Chemistry, 242, 78–86. DOI: 10.1016/j.jssc.2016.02.022
Smirnova, A., Rodmyre, C., & Acevedo, M. (2022). Battery cathodes for lithium-ion batteries with liquid and solid-state electrolytes. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Solid-State Energy Storage - a Path to Environmental Sustainability (pp. 171–195). Elsevier. DOI: 10.1016/B978-0-323-90635-7.00003-8
Torabi, F., & Ahmadi, P. (2020a). Lead–acid batteries. In Simulation of Battery Systems (pp. 149–215). Elsevier. DOI: 10.1016/b978-0-12-816212-5.00010-6
Torabi, F., & Ahmadi, P. (2020b). Zinc–silver oxide batteries. In Simulation of Battery Systems (pp. 217–262). Elsevier. DOI: 10.1016/b978-0-12-816212-5.00011-8
TRONEX. (2020). GCFT029-Pila-Alkalina-Tipo-D-Tronex. www.recopila.org
Volpi-León, V., López-Léon, L. D., Hernández-ávila, J., Baltazar-Zamora, M. A., Olguín-Coca, F. J., & López-León, A. L. (2017). Corrosion study in reinforced concrete made with mine waste as mineral additive. International Journal of Electrochemical Science, 12(1), 22–31. DOI: 10.20964/2017.01.08
Xu, W., Xie, Z., Cui, X., Zhao, K., Zhang, L., Mai, L., & Wang, Y. (2016). Direct growth of an economic green energy storage material: A monocrystalline jarosite-KFe3(SO4)2(OH)6-nanoplates@rGO hybrid as a superior lithium-ion battery cathode. Journal of Materials Chemistry A, 4(10), 3735–3742. DOI: 10.1039/c5ta10622b
Zeng, Y., Zhang, W., Wu, J., Wei, Y., Ke, Y., Shi, M., Yan, X., & Lin, Z. (2023). Simultaneous recovery of Fe2O3 and PbCl2 from hazardous jarosite residues via hydrothermal phase transformation with NaCl. Hydrometallurgy, 221. DOI: 10.1016/j.hydromet.2023.106150
Zhao, R., Li, Y., & Chan, C. K. (2016). Synthesis of Jarosite and Vanadium Jarosite Analogues Using Microwave Hydrothermal Reaction and Evaluation of Composition-Dependent Electrochemical Properties. Journal of Physical Chemistry C, 120(18), 9702–9712. DOI: 10.1021/acs.jpcc.6b03195
Zhou, S., Han, Y., Huang, R., Huang, Y., Dong, Q., Gang, H., Qin, J., Yu, X., Zeng, X., Cao, W., Wang, J., Chen, S., Wang, R., & Chen, M. (2024). Making waste profitable: Efficient recovery of metallic iron from jarosite residues. Chinese Journal of Chemical Engineering, 71, 66–76. DOI: 10.1016/j.cjche.2024.04.004
Zhou, X., Chen, Y., Tan, F., An, J., & Yang, W. (2024). Selective removal of iron from sulfuric acid leaching solution of aerospace magnetic material scraps by jarosite process. Waste Management, 188, 107–116. DOI: 10.1016/j.wasman.2024.08.007
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Eleazar Salinas-Rodríguez , Luis Humberto Mendoza-Huizar, Lucero Alejandra Curiel-Canales, Javier Flores Badillo, Juan Hernández-Ávila, Eduardo Cerecedo-Sáenz

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.