Adsorción de Verde Malaquita Utilizando Magnetita: Estudio Cinético y Termodinámico
DOI:
https://doi.org/10.29057/aactm.v12i12.15261Palabras clave:
Verde Malaquita, Adsorción, Magnetita, Cinética, TermodinámicaResumen
El deterioro ambiental por la industrialización y el uso de sustancias químicas ha provocado una grave contaminación del agua, destacando metales pesados, nitratos, microplásticos, residuos industriales y colorantes como los principales contaminantes. La industria textil, por su alto consumo de colorantes, contribuye significativamente a este problema, afectando ecosistemas y salud humana. Entre las tecnologías para mitigar esta situación, la adsorción destaca por su eficiencia y bajo costo. En este contexto, la magnetita (Fe₃O₄), una ferrita con propiedades magnéticas ha mostrado gran potencial como adsorbente. Este trabajo evalúa su capacidad para remover el colorante verde malaquita. A pH neutro, se logró una remoción del 66% (53 ppm) usando 10 mg de magnetita. La cinética se ajustó al modelo de pseudo segundo orden, y las isotermas al modelo de Langmuir, con una capacidad máxima de adsorción de 2 mg/g. Los parámetros termodinámicos obtenidos fueron: ΔH = 119 kJ/mol, ΔS = 21 J/mol·K y ΔG = -16 kJ/mol.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Ahmad, N., Arsyad, F. S., Royani, I., & Lesbani, A. (2022). Selectivity of Malachite Green on Cationic Dye Mixtures Toward Adsorption on Magnetite Humic Acid. Environment and Natural Resources Journal, 20(6), 634–643. https://doi.org/10.32526/ennrj/20/202200142
Ahmad, N., Wijaya, A., Arsyad, F. S., Royani, I., & Lesbani, A. (2024). Layered double hydroxide-functionalized humic acid and magnetite by hydrothermal synthesis for optimized adsorption of malachite green. Kuwait Journal of Science, 51(2). https://doi.org/10.1016/j.kjs.2024.100206
Ahmad, N., Zahara, Z. A., Wijaya, A., Arsyad, F. S., Royani, I., & Lesbani, A. (2023a). Fabrication and Characterization Fe3O4/Humic Acid for the Efficient Removal of Malachite Green. Science and Technology Indonesia, 8(4), 616–625. https://doi.org/10.26554/sti.2023.8.4.616-625
Ahmad, N., Zahara, Z. A., Wijaya, A., Arsyad, F. S., Royani, I., & Lesbani, A. (2023b). Fabrication and Characterization Fe3O4/Humic Acid for the Efficient Removal of Malachite Green. Science and Technology Indonesia, 8(4), 616–625. https://doi.org/10.26554/sti.2023.8.4.616-625
Ahmed, S. B., Mahmoud, N. M. R., Manda, A. A., & Refaat, H. M. (2022). Study of the optimization and mechanism for the remediation process of Malachite green dye via hybrid-based Magnetite-date’s stones. Alexandria Engineering Journal, 61(12), 9879–9889. https://doi.org/10.1016/j.aej.2022.02.065
Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. In Journal of Hazardous Materials (Vol. 393). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2020.122383
Ali, N. S., Khader, E. H., khudhur, R. H., Abdulrahman, M. A., Salih, I. K., & Albayati, T. M. (2024). Removal of anionic azo dye from wastewater using Fe3O4 magnetic nanoparticles adsorbents in a batch system. Desalination and Water Treatment, 317. https://doi.org/10.1016/j.dwt.2024.100033
Aly, S. T., Saed, A., Mahmoud, A., Badr, M., Garas, S. S., Yahya, S., & Hamad, K. H. (2024). Preparation of magnetite nanoparticles and their application in the removal of methylene blue dye from wastewater. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-69790-w
Andrade-Guel, M. L., Cabello-Alvarado, C. J., Cano-Salazar, L. F., Ávila-Orta, C. A., & Cruz-Delgado, V. J. (2023). Recent Developments in Wastewater Treatments. In Current Status of Fresh Water Microbiology (pp. 241–263). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5018-8_10
Attallah, O. A., Al-Ghobashy, M. A., Nebsen, M., & Salem, M. Y. (2016). Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: Kinetic, isotherm and mechanism analysis. RSC Advances, 6(14), 11461–11480. https://doi.org/10.1039/c5ra23452b
Bayantong, A. R. B., Shih, Y. J., Ong, D. C., Abarca, R. R. M., Dong, C. Di, & de Luna, M. D. G. (2021). Adsorptive removal of dye in wastewater by metal ferrite-enabled graphene oxide nanocomposites. Chemosphere, 274. https://doi.org/10.1016/j.chemosphere.2020.129518
Cano Salazar, L. F., Martínez Luévanos, A., Claudio-Rizo, J. A., Carrillo-Pedroza, F. R., Montemayor, S. M., & Rangel Méndez, J. R. (2020). Synthesis, structural characterization and Cu(II) adsorption behavior of manganite (MnOOH) nanorods. RSC Advances, 10(1), 179–186. https://doi.org/10.1039/c9ra09652c
Giri, S. K., Das, N. N., & Pradhan, G. C. (2011). Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1–3), 43–49. https://doi.org/10.1016/j.colsurfa.2011.08.052
He, K., Chen, G., Zeng, G., Chen, A., Huang, Z., Shi, J., Peng, M., Huang, T., & Hu, L. (2018). Enhanced removal performance for methylene blue by kaolin with graphene oxide modification. Journal of the Taiwan Institute of Chemical Engineers, 89, 77–85. https://doi.org/10.1016/j.jtice.2018.04.013
Jangra, A., Singh, J., Kumar, J., Rani, K., Kumar, P., Kumar, S., Singh, D., & Kumar, R. (2023). Dye Elimination by Surface-Functionalized Magnetite Nanoparticles: Kinetic and Isotherm Studies. Biointerface Research in Applied Chemistry, 13(4). https://doi.org/10.33263/BRIAC134.325
Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425–434. https://doi.org/10.1016/j.molliq.2018.10.048
Macías Erazo Karen Elizabeth. (2022). Aplicación de nanopartículas magnéticas de hierro (magnetita) en la adsorción de arsénico en aguas contaminadas. Escuela Superior Politécnica de Chimborazo.
Macías-Martínez, B. I., Cortés-Hernández, D. A., Zugasti-Cruz, A., Cruz-Ortíz, B. R., & Múzquiz-Ramos, E. M. (2016). Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method. Journal of Applied Research and Technology, 14(4), 239–244. https://doi.org/10.1016/j.jart.2016.05.007
Muinde, V. M., Onyari, J. M., Wamalwa, B., Wabomba, J., & Nthumbi, R. M. (2017). Adsorption of Malachite Green from Aqueous Solutions onto Rice Husks: Kinetic and Equilibrium Studies. Journal of Environmental Protection, 08(03), 215–230. https://doi.org/10.4236/jep.2017.83017
Murphy, O. P., Vashishtha, M., Palanisamy, P., & Kumar, K. V. (2023). A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time. In ACS Omega (Vol. 8, Issue 20, pp. 17407–17430). American Chemical Society. https://doi.org/10.1021/acsomega.2c08155
Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. (2022). Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/cajost.v4i1.3
Qu, W., Yuan, T., Yin, G., Xu, S., Zhang, Q., & Su, H. (2019). Effect of properties of activated carbon on malachite green adsorption. Fuel, 249, 45–53. https://doi.org/10.1016/j.fuel.2019.03.058
Rajput, S., Pittman, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/j.jcis.2015.12.008
Salem, M. A., Salem, I. A., Zaki, H. M., & El-Sawy, A. M. (2022). Elimination of Safranin-O and a binary mixture of Safranin-O and methylene blue from water by adsorption on magnetite/Ag nanocomposite. Egyptian Journal of Petroleum, 31(2), 39–49. https://doi.org/10.1016/j.ejpe.2022.05.002
Sevim, F., Lacin, O., Ediz, E. F., & Demir, F. (2021). Adsorption capacity, isotherm, kinetic, and thermodynamic studies on adsorption behavior of malachite green onto natural red clay. Environmental Progress and Sustainable Energy, 40(1). https://doi.org/10.1002/ep.13471
Tank, S. K., & Sharma, N. (2023). Adsorptive removal of malachite green using ferromagnetic sterculia gum – graftpoly(n-isopropylacrylamide-co-acrylamide)/magnetite nanocomposite. Indian Journal of Chemical Technology, 30(5), 643–655. https://doi.org/10.56042/ijct.v30i5.5193
Teo, S. H., Ng, C. H., Islam, A., Abdulkareem-Alsultan, G., Joseph, C. G., Janaun, J., Taufiq-Yap, Y. H., Khandaker, S., Islam, G. J., Znad, H., & Awual, M. R. (2022). Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review. Journal of Cleaner Production, 332. https://doi.org/10.1016/j.jclepro.2021.130039
Thakur, P., Chahar, D., Taneja, S., Bhalla, N., & Thakur, A. (2020). A review on MnZn ferrites: Synthesis, characterization and applications. In Ceramics International (Vol. 46, Issue 10, pp. 15740–15763). Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2020.03.287
Velo Facal, C. (2016). Eliminación de colorantes mediante la utilización de nanopartículas. Departamento de Química Física e Enxeñaría Química I.
Wang, K., Kou, Y., Wang, K., Liang, S., Guo, C., Wang, W., Lu, Y., & Wang, J. (2023). Comparing the adsorption of methyl orange and malachite green on similar yet distinct polyamide microplastics: Uncovering hydrogen bond interactions. Chemosphere, 340. https://doi.org/10.1016/j.chemosphere.2023.139806
Zahara, Z. A., Royani, I., Palapa, N. R., Mohadi, R., & Lesbani, A. (2023). Treatment of Methylene Blue Using Ni-Al/Magnetite Biochar Layered Double Hydroxides Composite by Adsorption. Bulletin of Chemical Reaction Engineering and Catalysis, 18(4), 659–674. https://doi.org/10.9767/bcrec.20049
Zheng, Z., Wang, S., Yang, F., & Pan, J. (2024). Controlled surface multifunctional groups over halloysite nanotube enabling reinforced lead adsorption in vitro. Separation and Purification Technology, 339. https://doi.org/10.1016/j.seppur.2024.126632
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Daniel de la Peña Aguirre, Elia Martha Múzquiz Ramos, Jorge Carlos Ríos Hurtado, Jesús Alejandro Claudio Rizo, Marisol Gallardo Heredia, Lucía Fabiola Cano Salazar

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Datos de los fondos
-
Universidad Autónoma de Coahuila
Números de la subvención DIP-UADEC C01-2024-9