Materiales tipo pirocloro: Estructura, propiedades y su potencial en la degradación de tintes orgánicos

Autores/as

DOI:

https://doi.org/10.29057/aactm.v12i12.15308

Palabras clave:

Pirocloro, Fotocatalizador, Luz visible, Tintes orgánicos, Tratamiento de agua, Estructura cristalina

Resumen

El creciente requerimiento de agua limpia y potable ha impulsado el desarrollo de tecnologías avanzadas para la remoción de contaminantes en aguas residuales, especialmente los tintes utilizados en la industria textil, conocidos por sus efectos nocivos para la salud humana y el ecosistema. En este contexto, la fotocatálisis heterogénea destaca como una estrategia para la degradación de moléculas orgánicas persistentes, aunque el desafío radica en obtener fotocatalizadores eficientes que operen bajo irradiación de luz visible. Entre los diversos materiales promisorios, los pirocloros se destacan como compuestos multifuncionales con aplicaciones ambientales relevantes, particularmente en la degradación de tintes orgánicos mediante irradiación UV-Visible. Esta revisión aborda la estructura, las propiedades fisicoquímicas y los recientes avances en la síntesis y uso de pirocloros como fotocatalizadores, además de discutir los retos actuales y las perspectivas futuras en el diseño de estos materiales.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
38%
33%
Días hasta la publicación 
114
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Alshgari, R. A., Abdullah, M., Abbas Shah, S. I., Abid, A. G., Mohammad, S., Ehsan, M. F., Ashiq, M. N., & Allakhverdiev, S. I. (2024). Enhanced photocatalytic property of Cu doped Ce2Zr2O7 toward photodegradation of methylene blue under visible light. Heliyon, 10(14), e34266.

DOI: 10.1016/j.heliyon.2024.e34266

Belousov, A. S., Parkhacheva, A. A., Suleimanov, E. V., Fukina, D. G., Markov, A. N., Vorotyntsev, A. V., Koroleva, A. V., Zhizhin, E. V., & Shafiq, I., (2024). Design of visible light-responsive CsM0.25W1.75O6 (M = Ni, Co, Mn, Cu) β-pyrochlore oxides with enhanced photocatalytic activity towards a set of pollutants. Ceramics International 50(22), 45334–45352.

DOI: 10.1016/j.ceramint.2024.08.374

De los Santos, D. M., Navas, J., Aguilar, T., Sánchez-Coronilla, A., Fernández-Lorenzo, C., Alcántara, R., Piñero, J. C., Blanco, G., & Martín-Calleja, J. (2015). Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase. Beilstein Journal of Nanotechnology, 6(1), 605–616

DOI: 10.3762/bjnano.6.62

Djurišić, A. B., He, Y., & Ng, A. M. C. (2020). Visible-light photocatalysts: Prospects and challenges. APL Materials, 8(3), 30903.

DOI: 10.1063/1.5140497

Frederichi, D., Scaliante, M. H. N. O., & Bergamasco, R. (2020). Structured photocatalytic systems: photocatalytic coatings on low-cost structures for treatment of water contaminated with micropollutants—a short review. Environmental Science and Pollution Research 2020 28:19, 28(19), 23610–23633.

DOI: 10.1007/s11356-020-10022-9

Friedmann, D. (2022). A General Overview of Heterogeneous Photocatalysis as a Remediation Technology for Wastewaters Containing Pharmaceutical Compounds. Water, 14(21), 3588.

DOI: 10.3390/w14213588

Fujita, T. C., Ito, H., & Kawasaki, M. (2022). Trends in bandgap of epitaxial A2B2O7 (A = Sn, Pb; B = Nb, Ta) films fabricated by pulsed laser deposition. APL Materials, 10(5).

DOI: 10.1063/5.0089731

Fukina, D. G., Koryagin, A. V., Koroleva, A. V., Zhizhin, E. V., Suleimanov, E. V., & Kirillova, N. I. (2021). Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation. Journal of Solid State Chemistry, 300, 122235.

DOI: 10.1016/j.jssc.2021.122235

Fukina, D. G., Koryagin, A. V., Koroleva, A. V., Zhizhin, E.V., Suleimanov, E. V., Volkova, N. S., & Kirillova, N. I. (2022). The role of surface and electronic structure features of the CsTeMoO6 β-pyrochlore compound during the photooxidation dyes process. Journal of Solid State Chemistry, 308, 122939.

DOI: 10.1016/j.jssc.2022.122939

Goutham, R., Badri Nayaran, R., Srikanth, B., & Gopinath, K. P. (2019). Supporting Materials for Immobilisation of Nano-photocatalysts. In: Inamuddin, Sharma, G., Kumar, A., Lichtfouse, E., & Asiri, A. (Eds.), Environmental Chemistry for a Sustainable World: Nanophotocatalysis and Environmental Applications. Vol. 29. Springer, Cham. Ch. 2, pp. 49–82.

DOI: 10.1007/978-3-030-10609-6_2

Jayaraman, V., & Mani, A. (2020). Interfacial coupling effect of high surface area Pyrochlore like Ce2Zr2O7 over 2D g-C3N4 sheet photoactive material for efficient removal of organic pollutants. Separation and Purification Technology, 235, 116242.

DOI: 10.1016/j.seppur.2019.116242

Kaviyarasu, K., Magdalane, C. M., Jayakumar, D., Samson, Y., Bashir, A. K. H., Maaza, M., Letsholathebe, D., Mahmoud, A. H., & Kennedy, J. (2020). High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. Journal of King Saud University - Science, 32(2), 1516–1522.

DOI: 10.1016/j.jksus.2019.12.006

Kim, J., Shih, P. C., Qin, Y., Al-Bardan, Z., Sun, C. J., & Yang, H. (2018). A Porous Pyrochlore Y2[Ru1.6Y0.4]O7–δ Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media. Angewandte Chemie International Edition, 57(42), 13877–13881.

DOI: 10.1002/anie.201808825

Kimura, T. (2011). Molten Salt Synthesis of Ceramic Powders. Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications.

DOI: 10.5772/20472

Koryagin, A. V., Fukina, D. G., Shotina, V. A., Titaev, D. N., Shilova, E. V., & Suleimanov, E. V. (2023). The electronic structure modification and photocatalytic ability improvement of Rb0.9Nb1.625Mo0.375O5.62 β-pyrochlore compound. Materials Science and Engineering: B, 297, 116732.

DOI: 10.1016/j.mseb.2023.116732

Luan, J., Zou, Z., Minghui, L., Luan, G., & Chen, Y. (2006). Structural and photocatalytic properties of the new solid photocatalyst In2BiTaO7. Research on Chemical Intermediates, 32(1), 31–42.

DOI: 10.1163/156856706775012950

Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimendional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276.

DOI: 10.1107/S0021889811038970

Parayil, R. T., Singh, P., Sudarshan, K., Mohapatra, M., Devi, P., & Gupta, S. K. (2025). Band gap and structural engineering to achieve excellent photocatalysis in A2B2O7 type composition. Inorganic Chemistry Communications, 174, 113965

DOI: 10.1016/j.inoche.2025.113965

Siddikha, A., Sathyanarayana, B., Muga, V., & Abdul Mujeeb, M. (2024). Preparation, characterization and photocatalytic studies of defect pyrochlore, KMn0·33Te1.67O6 and its composite with g-C3N4. Chemistry of Inorganic Materials, 3, 100053.

DOI: 10.1016/j.cinorg.2024.100053

Subramnian, M. A., Aravamudan, G., & Subba Rao, G. V. (1983) Oxide pyrochlres — A review. Progress in Solid State Chemistry, 15(2), 55–143.

DOI: 101016/0079-6786(83)90001-8

Sun, X., Gu, M., Yang, J., Ye, G., Xiao, X., Chen, M., Liu, M., Chen, Z., & Huang, H. (2022). The photocatalytic performances of Bi2MTaO7 (M = Ga, In) photocatalysts for environmental cleaning under visible-light. Inorganic Chemistry Communications, 139, 109390.

DOI: 10.1016/j.inoche.2022.109390

Tokura, Y., Motome, Y., & Ueda, K. (2025). Metal-insulator transitions in pyrochlore oxides. Reports on Progress in Physics, 88(5), 056001.

DOI: 10.1088/1361-6633/add0c5

Torres-Martínez, L. M., Ruiz-Gómez, M. A., Figueroa-Torres, M. Z., Juárez-Ramírez, I., & Moctezuma, E. (2012). Sm2FeTaO7 Photocatalyst for Degradation of Indigo Carmine Dye under Solar Light Irradiation. International Journal of Photoenergy, 2012(1), 939608.

DOI: 10.1155/2012/939608

Veiga, E. L. dos S., Murr, C. G. Ferreira de Souza, E. C., Alves, S. A., A. S., Antunes, S. R. M., Beltrán-Mir, H., & Cordoncillo, E., (2024). Fe-doped pyrochlores and defect fluorites as photocatalysts: Efficient dye degradation under visible light irradiation. Journal of Rare Earths.

DOI: 10.1016/j.jre.2024.08.007

Wang, Y., Jing, C., Ding, Z. Y., Zhang, Y. Z., Wei, T., Ouyang, J. H., Liu, Z. G., Wang, Y. J., & Wang, Y. M. (2023). The Structure, Property, and Ion Irradiation Effects of Pyrochlores: A Comprehensive Review. Crystals 13(1), 143.

DOI: 103390/cryst13010143

Zhang, C., Wang, F., Xiong, B., & Yang, H. (2022). Regulating the electronic structures of mixed B-site pyrochlore to enhance the turnover frequency in water oxidation. Nano Convergence, 9(1), 1–11.

DOI: 10.1186/s40580-022-00311-z

Zhang, J., Wu, H., Shi, L., Wu, Z., Zhang, S., Wang, S., & Sun, H. (2024). Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Separation and Purification Technology, 329, 125225.

DOI: 10.1016/j.seppur.2023.125225

Zhu, M., Liang, X., Yang, B. B., Zhu, S. J., Xie, C., Hu, L., Wei, R. H., Lu, W. J., Zhu, X. B., & Sun, Y. P. (2021). Sizeable bandgap modulation in Y2Hf2O7 pyrochlore oxide thin films through B-site substitution. Applied Physics Letters, 118(14).

DOI: 10.1063/5.0047701

Zakria, H. S., Othman, M. H. D., Kamaludin, R., Sheikh Abdul Kadir, S. H., Kurniawan, T. A., & Jilani, A. (2021). Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Advances, 11(12), 6985–7014.

DOI: 10.1039/D0RA10964A

Descargas

Publicado

2025-10-05

Cómo citar

Ramírez Ayala, M. F., León Flores, J. A., Pérez Mazariego, J. L., Quintana García, M. G., Quintanar Sierra, J. J. C., Hinojosa Nava, R., & Marquina Fábrega, M. L. (2025). Materiales tipo pirocloro: Estructura, propiedades y su potencial en la degradación de tintes orgánicos. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 12(12), 78–84. https://doi.org/10.29057/aactm.v12i12.15308