Análisis de los parámetros físicos sobre el comportamiento de la presión de poro
DOI:
https://doi.org/10.29057/aactm.v12i12.15315Palabras clave:
Oleaje somero, parámetros adimensionales, solución analítica, presión de poroResumen
En el presente estudio se realiza un análisis de la respuesta de un suelo poro-elástico inducida por oleaje en flujo somero. Para ciertas combinaciones de los parámetros físicos del suelo y del oleaje, la presión de poro tiende a cero. En estas condiciones se puede identificar la profundidad de inestabilidad del suelo. Este fenómeno ha sido estudiado ampliamente en la literatura especializada en variables físicas, siendo un tanto complicado identificar cuáles son las variables dominantes que cambian significativamente la presión de poro y que se deben de tomar en cuenta para el desplantamiento de estructuras oceánicas seguras. Para el análisis y cálculo de las variables dominantes en el suelo marino, se realiza a partir de un modelo matemático adimensional. Los resultados analíticos muestran una buena aproximación con la literatura especializada.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Arcos, E., Bautista, E., & Mendez, F. (2016). Scaling Analysis for the Liquefaction Phenomena Induced by Water Waves. OMAE2016-54535, V007T06A034; 8 pages. https://doi.org/10.1115/OMAE2016-54535
Arcos, E., Bautista, E., & Mendez, F. (2017). Dynamic response of a poro-elastic soil to the action of long water waves: Determination of the maximum liquefaction depth as an eigenvalue problem. Applied Ocean Research 67, 213-224. https://doi.org/10.1016/j.apor.2017.07.010
Biot, M. A., (1941). General theory of three-dimensional consolidation. Journal Applied Physics 12, 155-164.
Cha, D., Zhang, H., Blumenstein, M., (2011). Prediction of maximum wave-induced liquefaction in porous seabed using multi-artificial neural network model. Journal of Ocean Engineering 38, 878-887.
Chang, F. L., Yifa, W., Fu-Ping, G., & Li-Jing, Y. (2022). Spatiotemporal evolution of excess pore pressures in a silty seabed under progressive waves during residual liquefaction. Applied Ocean Research, 129, 103401. https://doi.org/10.1016/j.apor.2022.103401
Christian, J. T., Taylor, P. K., Yen, J. K. C., Erali, D. R., (1974). Large diameter underwater pipeline for nuclear power plant designed against soil liquefaction. Proceeding of Offshore Technology Conference, 597–606.
Groot, M. B., Kudella, M., Meijers, P. H., Oumeraci, H., (2006). Liquefaction phenomena underneath marine gravity structures subjected to wave loads. Journal of Waterway, Port, Coastal, and Ocean Engineering 132, 325-335.
Jeng, D. S., Barry, D. A., Li. L., (2001). Water wave-driven seepage in marine sediments. Journal Advanced in Water Resources 24, 1-10.
Jeng, D. S., Cha, D. H., (2003). Effects of dynamic soil behavior and wave nonlinearity on the wave-induced pore pressure and effective stresses in porous seabed 2003. Journal of Ocean Engineering 30, 2065-2089.
Jie, L., Jeng, D. S., Hongyi, Z., Yuan, G., Jungwei, L., & Yakung, G. (2023). Recent advances of seabed liquefaction around the vicinity of marine structures. Ocean Engineering, 280, 114660. https://doi.org/10.1016/j.oceaneng.2023.114660
Lee, J. F., Lan, Y. J., (2002). On waves propagation over poro-elastic seabed. Journal of Ocean Engineering 29, 931-946.
Lee, T. C., Tsai, C. P., Jeng, D. S., (2002). Ocean waves propagating over a porous seabed of finite thickness. Journal of Ocean Engineering,1577-601.
Liu, H., Jeng, D. S., (2007). A semi-analytical for random wave-induced soil reponse and seabed liquefaction in marine sediments. Journal of Ocean Engineering 24, 1211-1224.
Liu, P. L.-F., Park, Y. S., Lara, J. L., (2007). Long-wave-induced flows in an unsaturated permeable seabed. Journal of Fluid Mechanics 586, 323-345.
Lundgren, H., Lindhardt J. H. C., Romold, C. J., (1989). Stability of breakwaters on porous foundation. Proceeding of 12th International Conference on Soil Mechanics and Foundation Engineering, 451–454.
Madsen, O. S., (1978). Wave-induced pore pressures and effective stress in a porous bed. Géotechnique 28, 377-393.
Marcuson, W. F., (1978). Definition of terms related to liquefaction. Journal of Geotechnical Engineering Division 104, 1197-1200.
Polyanin, A. D., Zaitsev, V. F., (2002). Handbook of exact solutions for ordinary differential equations, Chapman and Hall.
Seed, H. B., Rahman, M. S., (1978). Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils. Journal Marine Geotechnology 3, 123-150.
Silvester, R., Hsu, J. R. C., (1989). Sines revisited. Journal of Waterway, Port, Coastal, and Ocean Engineering, 327–344.
Smith, A. W., Gordon, A. D., (1983). Large breakwater toe failures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 253–255.
Sumer, B. M., Dixen, F. H., Fredsoe, J., (2011). Stability of submerged rock berms exposed to motion of liquefied soil in waves. Journal of Ocean Engineering 38, 849-859.
Tsai, C. P., (1995). Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Journal of Ocean Engineering 22, 1-18.
Ulker, M. B. C., Rahman, M. S., Jeng D. S., (2009). Wave-induced response of seabed : Various formulations and their applicability. Journal of Applied Ocean Research 31, 12-24.
Verruijt, A., (1969). Elastic storage of aquifers. In flow through porous media: Academic Press.
Wang, J. G., Karim, M. R., Lin, P. Z., (2007). Analysis of seabed instability using element free Galerkin method. Journal of Ocean Engineering 34, 247-260.
Wen, F., Jeng, D. S., Wang, J. H., Zhou, X. L., (2012). Numerical modeling of response of a saturated porous seabed around an offshore pipeline considering non-linear wave and current interaction. Journal of Applied Ocean Research 35, 25-37.
Xiao, H, Young, Y. L., Prévost, J. H., (2010). Parametric study of breaking solitary wave induced liquefaction of coastal sandy slopes. Journal of Ocean Engineering 37, 546-553.
Yamamoto, T. H. L., Sellmeijer, H., Hijum, E. V., (1978). On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics 87, 193-206.
Yuegin, W., Xingsen, G., Jinkun, L., Fang, H., Hong, Z., Han, G., & Xiaolei, L. (2024). A methodology for susceptibility assessment of wave-induced seabed liquefaction in silt-dominated nearshore environments. Journal of Marine Science and Engineering, 12, 1-25. https://doi.org/ 10.3390/jmse12050785
Zhang, J. S., Jeng, D. S., Liu, P. L. F., Zhang, C., Zhang, Y., (2012). Reponse a porous seabed to water waves over permeable submerged breakwaters with Bragg reflection. Journal of Ocean Engineering.
Zhou, X. L., Xu, B., Wang, J. H., Li, Y. L., (2011). An analytical solution for wave-induced seabed response in a multi-layered poro-elastic seabed. Journal of Ocean Engineering 38, 119-129.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Emmanuel Arcos Hernández, Manuel Peralta Gutierrez, Enrique García Trinidad, José Rafael García Sánchez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.