Implementación de un gripper robótico: estudio cinemático y proceso de fabricación aditiva
DOI:
https://doi.org/10.29057/aactm.v12i12.15321Palabras clave:
Gripper robótico, Análisis cinemático, Manufactura aditiva, Robótica de bajo costo, Impresión 3DResumen
Este artículo presenta la implementación de un gripper robótico, desde su diseño conceptual y análisis cinemático hasta su fabricación y ensamblaje mediante manufactura aditiva. Se detalla el modelado del gripper como un mecanismo de cuatro barras, su simulación numérica en Python y la validación en SolidWorks Motion. Un aspecto central es la demostración de que la impresión 3D de código abierto, utilizando filamento PLA en una impresora Creality Ender 5-Plus, ofrece una solución viable y de bajo costo. Esto permite superar las barreras económicas y logísticas que enfrentan los investigadores en países emergentes para el desarrollo robótico. El éxito del ensamblaje valida la solidez del diseño, promoviendo la innovación y la autosuficiencia tecnológica en el campo de la robótica.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Angeles, Jorge, and Shaoping Bai. 2022. Kinematics of Mechanical Systems: Fundamentals, Analysis and Synthesis. Springer Nature.
Bratovanov, Nikolay. 2019. “Robot Modeling, Motion Simulation and Off-Line Programming Based on SolidWorks API.” In 2019 Third IEEE International Conference on Robotic Computing (IRC), 574–79. https://doi.org/10.1109/IRC.2019.00117.
Destaco. 2025. “Robohand.” https://www.destaco.com/products-by-brand/robohand.
DH-Robotics. 2024. “AG Series Electric Adaptive Gripper.” https://en.dh-robotics.com/product/ag.
Donnison, Mark. 2024. “Getting to Grips with the Kitronik Klaw, BBC Micro:bit, and MakeCode!” Kitronik Ltd. Kitronik Ltd. https://kitronik.co.uk/blogs/resources/getting-to-grips-with-the-kitronik-klaw-bbc-micro-bit-and-makecode-editor?srsltid=AfmBOop9lf67kIlTA71w0BixaBkMHyC4CQDaXoWEEMxyOO0PjCDFCcRQ.
Evjemo, Linn Danielsen, Trond Arne Hassel, Eirik B Njaastad, Salar Adel, Ingrid Fjordheim Onstein, Mathias Hauan Arbo, Vegard Brøtan, Andrej Cibicik, and Jan Tommy Gravdahl. 2024. “Possibilities and Challenges of Using Robot Manipulators in Additive Manufacturing (AM).” In Digitalization and Sustainable Manufacturing, 168–91. Routledge.
Grasso, Marzio, Lyes Azzouz, Paula Ruiz-Hincapie, Mauro Zarrelli, and Guogang Ren. 2018. “Effect of Temperature on the Mechanical Properties of 3D-Printed PLA Tensile Specimens.” Rapid Prototyping Journal 24 (8): 1337–46. https://doi.org/10.1108/RPJ-04-2017-0055.
Habibi, Mahboobe, Giuseppe Sutera, Dario Calogero Guastella, and Giovanni Muscato. 2025. “Design and Experimental Validation of a 3D-Printed Two-Finger Gripper with a v-Shaped Profile for Lightweight Waste Collection.” Robotics 14 (7). https://doi.org/10.3390/robotics14070087.
Kurbah, Francis, Shemphang Marwein, Teiborlin Marngar, and Bikash Kumar Sarkar. 2022. “Design and Development of the Pineapple Harvesting Robotic Gripper.” In Communication and Control for Robotic Systems, edited by Jason Gu, Rajeeb Dey, and Nabanita Adhikary, 437–54. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-1777-5_28.
Kurowski, Paul. 2015. Engineering Analysis with SolidWorks Simulation 2015. SDC publications.
Kuwahara, Mikael, Yoshiki Hasukawa, Fernando Garcia-Escobar, Satoshi Maeda, Lauren Takahashi, and Keisuke Takahashi. 2025. “Development of an Open-Source 3D-Printed Material Synthesis Robot FLUID: Hardware and Software Blueprints for Accessible Automation in Materials Science.” ACS Applied Engineering Materials 3 (4): 978–87. https://doi.org/10.1021/acsaenm.5c00084.
Liu, Chenying, Perla Maiolino, and Zhong You. 2021. “A 3D-Printable Robotic Gripper Based on Thick Panel Origami.” Frontiers in Robotics and AI Volume 8 - 2021. https://doi.org/10.3389/frobt.2021.730227.
Oke, Ayodeji Emmanuel, John Aliu, Patricia Fadamiro, Paramjit Singh Jamir Singh, Mohamad Shaharudin Samsurijan, and Mahathir Yahaya. 2023. “Robotics and Automation for Sustainable Construction: Microscoping the Barriers to Implementation.” Smart and Sustainable Built Environment 13 (3): 625–43. https://doi.org/10.1108/SASBE-12-2022-0275.
Oza, Vaibhav, and Pranav Mehta. 2018. “Arduino Robotic Hand: Survey Paper.” In 2018 International Conference on Smart City and Emerging Technology (ICSCET), 1–5. https://doi.org/10.1109/ICSCET.2018.8537312.
PTRobotics. 2025. “Lynxmotion Little Grip Kit (No Servos).” https://www.ptrobotics.com/braco-robotico/4035-lynxmotion-little-grip-kit-no-servos.html.
RI Manufacturing Co. 2025. DURA-GRIP PH-SERIES Parallel Grippers. RI Manufacturing Co. https://www.rimfg.com/catalog/PH%20Catalog%20Pages.pdf.
Robotiq. 2025. “Adaptive Grippers.” https://robotiq.com/products/adaptive-grippers.
Sadeq, Abdellatif M. 2024. “Python Programming for Mechanical Engineers.” Lulu Press, Inc.
Sadun, Amirul Syafiq, Jamaludin Jalani, Siti Hana Nasir, Mohd Nazrul Roslan, Hairulazwan Hashim, and Syazwani Mohd Anuar. 2019. “Development of Two-Fingered Underactuated Robot Gripper Using 3D Printer.” IOP Conference Series: Materials Science and Engineering 637 (1): 012001. https://doi.org/10.1088/1757-899X/637/1/012001.
Saha, Deeptam Tudu, Subhajit Sanfui, Rajat Kabiraj, and Santanu Das. 2014. “Design and Implementation of a 4-Bar Linkage Gripper.” IOSR Journal of Mechanical and Civil Engineering 11 (5): 61–66.
SoftGripping. 2025. “Educational Kit.” https://www.soft-gripping.shop/en/educational-kit.html.
Syafeeza, A. R., Norihan Abdul Hamid, Man Ling Eng, Guan Wei Lee, Hui Jia Thai, and Azureen Naja Amsan. 2022. “Robotic Arm Gripper Using Force Sensor for Crop Picking Mechanism.” Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 14 (4): 11–15. https://doi.org/10.54554/jtec.2022.14.04.002.
Tai, Kevin, Abdul-Rahman El-Sayed, Mohammadali Shahriari, Mohammad Biglarbegian, and Shohel Mahmud. 2016. “State of the Art Robotic Grippers and Applications.” Robotics 5 (2). https://doi.org/10.3390/robotics5020011.
Telegenov, Kuat, Yedige Tlegenov, and Almas Shintemirov. 2015. “A Low-Cost Open-Source 3-d-Printed Three-Finger Gripper Platform for Research and Educational Purposes.” IEEE Access 3: 638–47. https://doi.org/10.1109/ACCESS.2015.2433937.
Ufactory. 2025. “xArm Bio Gripper.” https://www.ufactory.us/product/bio-gripper.
Weiss Robotics. 2025. “GRIPKIT CR EASY.” https://weiss-robotics.com/gripkit/easy/.
Zhu, Mingzhu, Yoshiki Mori, Tatsuhiro Wakayama, Akira Wada, and Sadao Kawamura. 2019. “A Fully Multi-Material Three-Dimensional Printed Soft Gripper with Variable Stiffness for Robust Grasping.” Soft Robotics 6 (4): 507–19. https://doi.org/10.1089/soro.2018.0112.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Enrique García Trinidad, Emmanuel Arcos Hernández, José Rafael García Sánchez, Manuel Peralta Gutiérrez, Cesar Felipe Juárez Carrillo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.