Producción sustentable de microfibrillas de celulosa a partir de fibras de agave mediante irradiación de microondas
DOI:
https://doi.org/10.29057/aactm.v12i12.15327Palabras clave:
Fibras Naturales, Microfibrillas, Nanocristales, Celulosa, MicroondasResumen
El presente trabajo propone una novedosa metodología sustentable para la obtención de microfibrillas (MFCs) a partir de residuos agroindustriales de fibras de agave (FA), mediante un proceso de purificación basado en radiación de microondas. La FA fue pretratada mediante lavado, tamizado y secado, para posteriormente ser purificada mediante una solución alcalina bajo radiación de microondas, la cual induce el calentamiento dieléctrico del material ocasionando su fibrilación. Las MFCs obtenidas se caracterizaron por presentar alta cristalinidad y pureza. Se emplearon técnicas de caracterización como XRD, FTIR, OM, SEM, TGA y DSC para evaluar la eficiencia del proceso. Los resultados demostraron que el método propuesto permite obtener MFCs, con un menor uso de reactivos y un menor tiempo de procesamiento, lo que lo posiciona como una alternativa viable dentro de los principios de química verde para la creación de productos lignocelulósicos de valor agregado a partir de residuos de la industria del tequila.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
A. K. Mohantya, b., , M. M., b, & , G. H. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276(1), 1-24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1::AID-MAME1%3e3.0.CO;2-W
A.Balaji, B. K., and C. Sundar Raj. (2015). Bagasse Fiber – The Future Biocomposite Material: A Review. International Journal of ChemTech Research, 7, 223 - 233.
Balaji, A. B., Pakalapati, H., Khalid, M., Walvekar, R., & Siddiqui, H. (2018). Natural and synthetic biocompatible and biodegradable polymers. In Biodegradable and Biocompatible Polymer Composites (pp. 3-32). https://doi.org/10.1016/b978-0-08-100970-3.00001-8
Bharath, K. N., Madhu, P., Gowda, T. G. Y., Sanjay, M. R., Kushvaha, V., & Siengchin, S. (2020). Alkaline Effect on Characterization of Discarded Waste of Moringa oleifera Fiber as a Potential Eco-friendly Reinforcement for Biocomposites. Journal of Polymers and the Environment, 28(11), 2823-2836. https://doi.org/doi.org/10.1007/s10924-020-01818-4
Cárdenas Bahena, Á., Sánchez García, S., Tinajero Morales, C., González Rodríguez, V. M., & , & Baires Várguez, L. (2012). Use of sodium Hypochlorite in root canal irrigation. Opinion survey and concentration in commercial products. . Revista Odontológica Mexicana Órgano Oficial de la Facultad de Odontología UNAM, 16(4). https://doi.org/https://www.revistas.unam.mx/index.php/rom/article/view/34169
Cichosz, S., & Masek, A. (2020). IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials (Basel), 13(20). https://doi.org/10.3390/ma13204573
El Oudiani, A., Msahli, S., & Sakli, F. (2017). In-depth study of agave fiber structure using Fourier transform infrared spectroscopy. Carbohydrate Polymers, 164, 242-248. https://doi.org/10.1016/j.carbpol.2017.01.091
French, A. D. (2013). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885-896. https://doi.org/10.1007/s10570-013-0030-4
García-Méndez, R. F., Cortés-Martínez, C. I., & Almendárez-Camarillo, A. (2022). Thermochemical and Tensile Mechanical Properties of Fibers Mechanically Extracted from Leaves of Agave angustifolia Haw. Journal of Natural Fibers, 19, 3171 - 3185. https://doi.org/doi.org/10.1080/15440478.2020.1840480
Johar, N., Ahmad, I., & Dufresne, A. . (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93 - 99. https://doi.org/https://doi.org/https://doi.org/10.1016/j.indcrop.2011.12.016
Kambli, N., Vellaichamy, M., Patil, P., Saxena, S., & Deshmukh, R. (2017). Synthesis and characterization of microcrystalline cellulose powder from corn husk fibres using biochemical route. Cellulose, 24. https://doi.org/doi.org/10.1007/s10570-017-1522-4
Kim, D.-Y., Lee, B.-M., Koo, D. H., Kang, P.-H., & Jeun, J.-P. (2016). Preparation of nanocellulose from a kenaf core using E-beam irradiation and acid hydrolysis. Cellulose, 23(5), 3039-3049. https://doi.org/https://doi.org/10.1007/s10570-016-1037-4
Koshti, R., Mehta, L., & Samarth, N. (2018). Biological Recycling of Polyethylene Terephthalate: A Mini-Review. Journal of Polymers and the Environment, 26(8), 3520-3529. https://doi.org/10.1007/s10924-018-1214-7
La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. https://doi.org/10.1016/j.compositesa.2011.01.017
Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymers, 90(2), 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
Menossi, M., Cisneros, M., Alvarez, V. A., & Casalongué, C. (2021). Current and emerging biodegradable mulch films based on polysaccharide bio-composites. A review. Agronomy for Sustainable Development, 41(4). https://doi.org/10.1007/s13593-021-00685-0
Morán, J. I., Alvarez, V. A., Cyras, V. P., & Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1), 149-159. https://doi.org/https://doi.org/10.1007/s10570-007-9145-9
Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels, 3(1), 10. https://doi.org/10.1186/1754-6834-3-10
Pereira, A. L. S., do Nascimento, D. M., Souza, M. S. M., Cassales. (2014). Banana (Musa sp. cv. Pacovan) pseudostem fibers are composed of varying lignocellulosic composition throughout the diameter. BioResources, 9. https://doi.org/doi.org/10.15376/biores.9.4.7749-7763
Pereira, G. B., Pereira, G. C., Lima, M., De Jesus, B. J. S., De Andrade Silva, E., Carvalho Benini, K. C., Bandeira, C. F., & Montoro, S. R. (2017). Featuring High Impact Polystyrene Composites Strengthened with Green Coconut Fiber Developed for Automotive Industry Application. Journal of Research Updates in Polymer Science, 6(1), 17-20. https://doi.org/10.6000/1929-5995.2017.06.01.3
Puglia, D., Luzi, F., Lilli, M., Sbardella, F., Pauselli, M., Torre, L., & Benincasa, P. . (2020). Straw fibres from barley hybrid lines and their reinforcement effect in polypropylene based composites. . Industrial Crops and Products, 154. https://doi.org/https://doi.org/https://doi.org/10.1016/j.indcrop.2020.112736
Romero-Zúñiga, G. Y., Sánchez-Valdés, S., Ceniceros-Reyes, M. A., Sifuentes-Nieves, I., Gallardo-Vega, C. A., Solís-Rosales, S. G., González-Morones, P., & Hernández-Hernández, E. (2023). A one-step process to produce high-crystallinity cellulose microfibrils from microwave irradiation of natural fiber waste. Cellulose, 30(16), 10067-10082. https://doi.org/10.1007/s10570-023-05493-1
Romero-Zúñiga, G. Y., Sánchez-Valdés, S., Ceniceros-Reyes, M. A., Sifuentes-Nieves, I., , Gallardo-Vega, C. A., Solís-Rosales, S. G., González-Morones, P., & Hernández, & Hernández, E. (2023). A one-step process to produce high-crystallinity cellulose microfibrils from microwave irradiation of natural fiber waste. . Cellulose, 30(16), 10067-10082. https://doi.org/oi.org/10.1007/s10570-023-05493-1
Rubio-López, A., Olmedo, A., Díaz-Álvarez, A., & Santiuste, C. (2015). Manufacture of compression moulded PLA based biocomposites: A parametric study. Composite Structures, 131, 995-1000. https://doi.org/10.1016/j.compstruct.2015.06.066
Selmi, T., Enaime, G., Kesraoui, A., Bacaoui, A., & Seffen, M. (2021). Dye removal by activated carbon produced from Agave americana fibers: stochastic isotherm and fractal kinetic studies. Environ Sci Pollut Res Int, 28(34), 46580-46591. https://doi.org/10.1007/s11356-020-10768-2
Sifuentes-Nieves, I., Yáñez-Macías, R., Flores-Silva, P. C., Gonzalez-Morones, P., Gallardo, & Vega, C. A., Ramírez-Vargas, E., & Hernández-Hernández, E. (2023). Ultrasound/Plasma-Modified Agave Fibers as Alternative Eco-sustainable Raw Material to Reinforce Starch-Based Films. Journal of Polymers and the Environment, 31(2), 595 - 607. https://doi.org/doi.org/10.1007/s10924-022-02645-5
Subramanya, R., Satyanarayana K. G. Shetty Pilar B. (2017). Evaluation of Structural, Tensile and Thermal Properties of Banana Fibers. Journal of Natural Fibers, 14(4), 485-497. https://doi.org/doi.org/10.1080/15440478.2016.1212771
Turbak, A. F., Snyder, F. W., & Sandberg, K. R. (1983). Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential Journal Name: J. Appl. Polym. Sci.: Appl. Polym. Symp.; (United States); Journal Volume: 37; Conference: 9. cellulose conference, Syracuse, NY, USA, 24 May 1982, United States. https://www.osti.gov/biblio/5062478
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis.
. Fuel Processing Technology, 86(12), 1781-1788. https://doi.org/doi.org/10.1016/j.fuel.2006.12.013
Zhao, X., Cornish, K., & Vodovotz, Y. (2020). Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environmental Science and Technology, 54(8), 4712-4732. https://doi.org/10.1021/acs.est.9b03755
Zhu, Z., Toor, S. S., Rosendahl, L., Yu, D., & Chen, G. (2015). Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw. Energy and Fuels, 80, 284 - 292. https://doi.org/doi.org/https://doi.org/10.1016/j.energy.2014.11.071
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Jhosseet Javier Ríos Ríos, Rodolfo Immanol Velázquez Salinas, Mónica Aimeé Ceniceros Reyes, Ernesto Hernández Hernández, Pablo Gonzales Morones , Luis Manuel Palacios Pineda

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.








