Efecto de la temperatura de tratamiento térmico en las propiedades magnéticas, ópticas y fotocatalíticas de NiFe2O4 sintetizada por molienda de alta energía

Palabras clave: Ferritas, NiFe2O4, Fotocatálisis, Tratamiento térmico, Molienda de alta energía

Resumen

En este trabajo se presenta el efecto de la temperatura de tratamiento térmico en la estructura y las propiedades, magnéticas, ópticas y fotocatalíticas de ferrita de níquel (NiFe2O4) obtenida por molienda mecánica de alta energía. Mediante difracción de rayos X (DRX) y refinamiento Rietveld se confirmó la formación de NiFe2O4 y la presencia de Fe2O3 a temperaturas inferiores a 1273 K. Por medio de magnetometría de muestra vibrante (MMV) se observó un aumento en los valores de magnetización cuando se incrementa la temperatura de tratamiento, siendo atribuido a la distribución catiónica de los iones magnéticos de Fe3+ y Ni2+ en la celda unitaria. Por medio de reflectancia difusa se determinaron los valores de banda prohibida, los cuales confirmaron que absorbe luz en el espectro visible. Las muestras muestran una buena eficiencia de degradación, alcanzando valores superiores al 60 %, siendo una buena alternativa como fotocatalizadores empleando el rango de luz visible y recuperables magnéticamente.

Descargas

La descarga de datos todavía no está disponible.

Citas

Betancourt-Cantera, L. G., Fuentes, K. M., Bolarín-Miró A. M., Aldabe-Bilmes S., Cortés-Escobedo C. A., and Sánchez-De Jesús F., (2020). Enhanced Photocatalytic Activity of BiFeO3 for Water Remediation via the Addition of Ni2+. Materials Research Bulletin 132, 111012. DOI: 10.1016/j.materresbull.2020.111012.

Chandrika, M., Ravindra A. V., (2019). Studies on Structural and Optical Properties of Nano ZnFe2O4 and ZnFe2O4-TiO2 Composite Synthesized by Co-Precipitation Route. Materials Chemistry and Physics 230, 107–13. DOI: 10.1016/j.matchemphys.2019.03.059.

Dhiman, P., Rana G., Kumar A., Sharma G., (2021). Nanostructured Magnetic Inverse Spinel Ni–Zn Ferrite as Environmental Friendly Visible Light Driven Photo-Degradation of Levofloxacin. Chemical Engineering Research and Design 175, 85–101. DOI: 10.1016/j.cherd.2021.08.028.

Garcés, L. F., Mejía E. A., Santamaría J. J.. (2004). La fotocatálisis como alternativa para el tratamiento de aguas residuales. Revista Lasallista 1, 83–92.

Garcia-Muñoz, P., Fresno F., De la Peña O’Shea V. A., Keller N.. (2020). Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Topics in Current Chemistry 378, 378:6. DOI: 10.1007/s41061-019-0270-3.

Granone, L. I., Dillert R., Heitjans P., Bahnemann D. W., (2019). Effect of the Degree of Inversion on the Electrical Conductivity of Spinel ZnFe2O4. ChemistrySelect 4, 1232–39. DOI:10.1002/slct.201804062.

Hirthna, S. S., Rajan P. I., Adinaveen T., (2018). Synthesis and Characterization of NiFe2O4 Nanoparticles for the Enhancement of Direct Sunlight Photocatalytic Degradation of Methyl Orange. Journal of Superconductivity and Novel Magnetism 31, 3315–22. DOI:10.1007/s10948-018-4601-3.

Ismael, M., (2021). Ferrites as Solar Photocatalytic Materials and Their Activities in Solar Energy Conversion and Environmental Protection: A Review. Solar Energy Materials and Solar Cells 219, 110786. DOI:10.1016/j.solmat.2020.110786.

Kisch, H., (2013). Semiconductor Photocatalysis - Mechanistic and Synthetic Aspects. Angewandte Chemie-International Edition 52, 812–47. DOI:10.1002/anie.201201200.

Majid, F., Rauf J., Ata S., Bibi I., Malik A., Ibrahim S. M., Ali A., (2021). Synthesis and Characterization of NiFe2O4 Ferrite: Sol–Gel and Hydrothermal Synthesis Routes Effect on Magnetic, Structural and Dielectric Characteristics. Materials Chemistry and Physics 258, 123888. DOI:10.1016/j.matchemphys.2020.123888.

Mera Benavides, D. A., Mera Benavides A.C., (2011). Tratamiento Fotocatalítico de Aguas Residuales Generadas En Laboratorios Con Presencia Del Indicador Verde de Bromocresol. Revista Lasallista de Investigacion 8, 28–41.

Nevárez-Martínez, M. C., Espinoza-Montero P. J., Quiroz-Chávez F. J., Ohtani B., (2017). Fotocatálisis: Inicio, Actualidad y Perspectivas a Través Del TiO2. Avances En Química. Avances En Química 12, 45–59.

Pottker, W. E., Ono R., Cobos M.A., Hernando A., (2018). Influence of Order-Disorder Effects on the Magnetic and Optical Properties of NiFe2O4 Nanoparticles. Ceramics International 44, 17290–97. DOI: 10.1016/j.ceramint.2018.06.190.

Rodriguez, J., Candal R. J., Estrada W., Blesa M. A., (2005). El Fotocatalizador : Síntesis, Propiedades y Limitaciones. Tecnologías Solares Para La Desinfección y Descontaminación Del Agua, 139–145. https://www.psa.es/webesp/projects/solarsafewater/curso.php.

Rosales-González, O., Sánchez-De Jesús F., Camacho-González M.A., Cortés-Escobedo C.A., Bolarín-Miró A.M., (2020). Synthesis of Magnetically Removable Photocatalyst Based on Bismuth Doped YFeO3. Materials Science and Engineering: B 261, 114773. DOI:10.1016/j.mseb.2020.114773.

Shannon, R. D., (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Crystallographica A 32, 751–67. DOI: 10.1023/A:1018927109487

Silva, E., Ouriques-Brasileiro I. L., Stumpf-Madeira V., (2020). Reusable CuFe2O4-Fe2O3 catalyst Synthesis and Application for the Heterogeneous Photo-Fenton Degradation of Methylene Blue in Visible Light. Journal of Environmental Chemical Engineering 8, 104132 DOI:10.1016/j.jece.2020.104132.

Slimani, Y., Almessiere M. A., Güner S., Tashkandi N. A., Baykal A., Sarac M. F., Nawaz M., Ercan I., (2019). Calcination Effect on the Magneto-Optical Properties of Vanadium Substituted NiFe2O4 Nanoferrites. Journal of Materials Science: Materials in Electronics, 30. 0123456789.DOI: 10.1007/s10854-019-01243-x.

Soon, Ai Ni, Hameed B. H., (2011). Heterogeneous Catalytic Treatment of Synthetic Dyes in Aqueous Media Using Fenton and Photo-Assisted Fenton Process. Desalination 269, 1–16.DOI:10.1016/j.desal.2010.11.002.

Vara Prasad, B. B., Ramesh K. V., Srinivas A., (2018). Structural and Magnetic Properties of Nanocrystalline Nickel Ferrite (NiFe2O4) Synthesized in Sol-Gel and Combustion Routes. Solid State Sciences 86, 86–97. DOI:10.1016/j.solidstatesciences.2018.10.008.

Publicado
2022-10-05
Cómo citar
Monrroy-López, M. U., Sánchez De Jesús, F., Bolarín Miró, A. M., Martínez Luévanos, A., Ramírez Cardona, M., & Rosales González, O. (2022). Efecto de la temperatura de tratamiento térmico en las propiedades magnéticas, ópticas y fotocatalíticas de NiFe2O4 sintetizada por molienda de alta energía. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 9(9), 13-18. https://doi.org/10.29057/aactm.v9i9.9307