Una perspectiva global de las tierras raras

Palabras clave: Tierras raras, Elementos críticos, Extracción minera, Geopolíticas, Nuevas tecnologías

Resumen

Los elementos de tierras raras han sido considerados por diversos países como elementos críticos, debido a su importancia tecnológica que impulsa al mundo moderno, además, aunque las tierras raras pueden encontrarse en la mayor parte del mundo, en la actualidad existe un desabasto a nivel mundial, debido a la cada vez menor cantidad de yacimientos minerales que pueden ser económicamente rentables para su extracción y producción. En este sentido, poco más del 50% de la cantidad de tierras raras que se comercializan a nivel mundial, provienen de China, quien ha creado un monopolio en la producción y exportación de dichos elementos, de igual manera es importante mencionar que aunque ciertos elementos de tierras raras son indispensables para las nuevas tecnologías, sus procesos de extracción generan gases y efluentes peligrosos para el medio ambiente y el ser humano, razón por la cual diversos países han implementado políticas que encarecen el procedimiento de producción de tierras raras, encaminando a buscar alternativas que sean amigables con el ambiente y al mismo tiempo sean económicamente rentables.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ali, S. (2014). Social and Environmental Impact of the Rare Earth Industries. Resources, 3, 123-134. doi:10.3390/resources3010123

Andreev, O., Ivanov, V., Gorshkov, A., Miodushevskiy, P., & Andreev, P. (2016). Chemistry and Technology of Samarium Monosulfide. Eurasian Chemico-Technological Journa, 18, 55-65. doi:10.18321/ectj396

Arshi , P., Vahidi, E., & Zhao, F. (2018). Behind the scenes of clean energy – the environmental footprint of rare earth products. ACS Sustainable Chemistry & Engineering, 6(3), 3311-3320. doi:10.1021/acssuschemeng.7b03484

Asadollahzadeh, M., Torkaman, R., & Torab Mostaedi, M. (2020). Recovery of gadolinium ions based on supported ionic liquid membrane: parametric optimization via central composite design approach. International Journal of Environmental Science and Technology. doi:10.1007/s13762-020-02743-8

Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., & Moazami, F. (2020). Estimation of Performance with the Two Truncated Probability Density Functions, Case Study: Using Mixco Column to Extract Samarium and Gadolinium. SEPARATION SCIENCE AND TECHNOLOGY, 1-12. doi:10.1080/01496395.2020.1757713.

Baharom, M., Rahman, M., Latif, A., Wang, P., Arof, H., & Harun, S. (2019). Lutetium oxide film as a passive saturable absorber for generating Q switched fiber laser at 1570 nm wavelength. Optical Fiber Technology, 50, 82-86. doi:10.1016/j.yofte.2019.03.003

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285-1303. doi:10.1016/j.gsf.2018.12.005

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. 10, 1285-1303. doi:10.1016/j.gsf.2018.12.005

Batapola, N., Dushyantha, N., Premasiri, H., Abeysinghe, A., Rohitha, L., Ratnayake, N., . . . Dharmaratne , P. (2020). A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. Journal of Asian Earth Sciences, 20, 1-15. doi:10.1016/j.jseaes.2020.104475.

Binnemans, K., Jones, P. T., Müller, T., & Yurramendi, L. (2018). Rare Earths and the Balance Problem: How to Deal with Changing Markets? Journal of Sustainable Metallurgy, 4(1). doi:10.1007/s40831-018-0162-8

Cardoso, C., Almeida, J., Lopes, C., Trindade, T., Vale, C., & Pereira, E. (2019). Recovery of Rare Earth Elements by Carbon-Based Nanomaterials—A Review. Nanomaterials—A Review, 9(6), 814. doi:10.3390/nano9060814

Carmignani, L., Clementi, M., Signorini, C., Motta, G., Nazzani, S., & Palmisano, F. (2019). Safety and feasibility of thullium laser transurethral resection of prostate for the treatment of benign prostatic enlargement in overweight patients. Asian Journal of Urology, 6(3), 270-274. doi:10.1016/j.ajur.2018.05.004

Ciacci, L., Vassura, I., Cao, Z., Liu, G., & Passarini, F. (2019). Recovering the “new twin”: Analysis of secondary neodymium sources and recycling potentials in Europe. Resources, Conservation & Recycling, 142, 143-152. doi:10.1016/j.resconrec.2018.11.024

Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., . . . Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research, 15188-15194. doi:10.1007/s11356-015-5221-0

Dabhane, H., Ghotekar, S., Tambade, P., & Medhane, V. (2020). Plant mediated green synthesis of lanthanum oxide (La2O3) nanoparticles: A review. Asian Journal of Nanoscience and Materials , 3, 291-299. doi:10.26655/AJNANOMAT.2020.4.3

De Vargas Briao, G., Gurgel da Silva, M., & Adeodato Vieira, M. (2021). Expanded vermiculite as an alternative adsorbent for the dysprosium recovery. Journal of the Taiwan Institute of Chemical Engineers, 127, 228-235. doi:10.1016/j.jtice.2021.08.022

Engi, M. (2017). Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite. Reviews in Mineralogy & Geochemistry, 83, 365-418. doi:10.2138/rmg.2017.83.12

Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240, 504-510. doi:10.1016/j.jenvman.2019.04.002

Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240, 504-510. doi:10.1016/j.jenvman.2019.04.002

Ganguli, R., & Cook, D. (2018). Rare earths: A review of the landscape. MRS Energy & Sustainability, 5, 1-16. doi:10.1557/mre.2018.7

Garside , M. (2022, Marzo 4). Statista. Retrieved Mayo 27, 2022, from https://www.statista.com/statistics/270277/mining-of-rare-earths-by-country/

Hou, W., Liu, H., Wang, H., & Wu, F. (2018). Structure and patterns of the international rare earths trade: A complex network analysis. Resources Policy, 55, 133-142. doi:10.1016/j.resourpol.2017.11.008

Ji, B., Li , Q., Huang, Q., & Zhang, W. (2021). Enhanced leaching recovery of rare earth elements from a phosphatic waste clay through calcination pretreatment . Journal of Cleaner Production, 319, 128654. doi:10.1016/j.jclepro.2021.128654

Jowitt, S., Werner, T., Weng, Z., & Mudd, G. (2018). Recycling of the rare earth elements. Green and Sustainable Chemistry, 13, 1-7. doi:10.1016/j.cogsc.2018.02.008

Jusza, A., Lipińska, L., Baran, M., Olszyna, A., Jastrzębska, A., Gil, M., . . . Piramidowicz, R. (2019). Praseodymium doped nanocrystals and nanocomposites for application in white light sources. Optical Materials, 95, 109247. doi:10.1016/j.optmat.2019.109247

Kalantzakos, S. (2020). The Race for Critical Minerals in an Era of Geopolitical Realignments. The International Spectator, 1-16. doi:10.1080/03932729.2020.1786926

Kamenopoulos, S., & Agioutantis, Z. (2019). Geopolitical Risk Assessment of Countries with Rare Earth Element Deposits. Mining, Metallurgy & Exploration. doi:10.1007/s42461-019-00158-9

Knudsen,, B. (2019). Laser Fibers for Holmium:YAG Lithotripsy: What Is Important and What Is New. Urologic Clinics, 46(2), 185-191. doi:10.1016/j.ucl.2018.12.004

Kumari, A., Kumar Jha, M., Deo Pathak, D., Chakravarty, S., & Lee, J.-c. (2018). Processes developed for the separation of europium (Eu) from various resources (Eu) from various resources. Separation & Purification Reviews , 1-31. doi:10.1080/15422119.2018.1454959

Li, X.-Y., Ge, J.-P., Chen, W.-Q., & Wang, P. (2019). Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resources, Conservation & Recycling, 145, 322-331. doi:10.1016/j.resconrec.2019.02.003

Marx, J., Schreiber, A., Zapp, P., & Walachowicz, F. (2018). Comparative Life Cycle Assessment of NdFeB Permanent Magnet Production from Different Rare Earth Deposits. ACS Sustainable Chemistry & Engineering, 6(5), 5858-5867. doi:10.1021/acssuschemeng.7b04165

Moon, B., Jin Kim, S., Lee, S., Lee, A., Lee, H., Lee, D., . . . Lee, S.-K. (2019). Rare-Earth-Element-Ytterbium-Substituted Lead-Free Inorganic Perovskite Nanocrystals for Optoelectronic Applications. Advanced Materials, 1901716. doi:10.1002/adma.201901716

Overland, I. (2019). The geopolitics of renewable energy: Debunking four emerging myths. Energy Research & Social Science, 49, 36-40. doi:10.1016/j.erss.2018.10.018

Patel, K., Zhang, J., & Ren, S. (2018). Rare-earth-free high energy product manganese based magnetic materials. Nanoscale, 10(25), 11701-11718. doi:10.1039/C8NR01847B

Pillai, P. (2007). Naturally occurring radioactive material (NORM) in the extraction and processing of rare earths. In I. A. Agency (Ed.), Naturally Occurring Radioactive Material (NORM V) (pp. 197-221). Sevilla, España: International Atomic Energy Agency Vienna.

Rajive , G., & Douglas , R. (2018). Rare earths: A review of the landscape. MRS Energy & Sustainability, 5, 1-16. doi:10.1557/mre.2018.7

Ricketts, N. J. (2019). Scandium Solvent Extraction. Data Mining, Light Metals 2019, 1395-1401. doi:10.1007/978-3-030-05864-7_174

Schmid, M. (2019). Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn. Resources Policy, 63, 101457. doi:10.1016/j.resourpol.2019.101457

Scirè, S., & Palmisano, L. (2020). Cerium and cerium oxide: A brief introduction. In S. Scirè, & L. Palmisano, Cerium Oxide (CeO2): Synthesis, Properties and Applications (pp. 1-12). doi:10.1016/B978-0-12-815661-2.00001-3

Singh, K., Harish, S., Kristy, A., Shivani, V., J., A., Navaneethan, M., & Shimomura, M. (2018). Erbium doped TiO2 interconnected mesoporous spheres as an efficient visible light catalyst for photocatalytic applications. Applied Surface Science, 449, 755-763. doi:10.1016/j.apsusc.2018.01.279

Suwanmanee, U., & Ratthanapra, D. (2019). Life Cycle Assessment of Separation Methods of Cerium Oxide from Monazite Ore . The Italian Association of Chemical Engineering, 74, 907-912. doi: 10.3303/CET1974152

Swain, N., & Mishra, S. (2019). A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of Cleaner Production, 220, 884-898. doi:10.1016/j.jclepro.2019.02.094

Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., . . . Chang, Q. (2018). The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports, 8(1), 1-8. doi:10.1038/s41598-018-23948-5

Terada, N., & Mamiya, H. (2021). High-efficiency magnetic refrigeration using holmium. Nature Communications, 12(1212). doi:10.1038/s41467-021-21234-z

Binnemans, K., Jones, P. T., Müller, T., & Yurramendi, L. (2018). Rare Earths and the Balance Problem: How to Deal with Changing Markets? Journal of Sustainable Metallurgy, 4(1). doi:10.1007/s40831-018-0162-8

Engi, M. (2017). Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite. Reviews in Mineralogy & Geochemistry, 83, 365-418. doi:10.2138/rmg.2017.83.12

Hou, W., Liu, H., Wang, H., & Wu, F. (2018). Structure and patterns of the international rare earths trade: A complex network analysis. Resources Policy, 55, 133-142. doi:10.1016/j.resourpol.2017.11.008

Kamenopoulos, S., & Agioutantis, Z. (2019). Geopolitical Risk Assessment of Countries with Rare Earth Element Deposits. Mining, Metallurgy & Exploration. doi:10.1007/s42461-019-00158-9

Moon, B., Jin Kim, S., Lee, S., Lee, A., Lee, H., Lee, D., . . . Lee, S.-K. (2019). Rare-Earth-Element-Ytterbium-Substituted Lead-Free Inorganic Perovskite Nanocrystals for Optoelectronic Applications. Advanced Materials, 1901716. doi:10.1002/adma.201901716

Overland, I. (2019). The geopolitics of renewable energy: Debunking four emerging myths. Energy Research & Social Science, 49, 36-40. doi:10.1016/j.erss.2018.10.018

Terada, N., & Mamiya, H. (2021). High-efficiency magnetic refrigeration using holmium. Nature Communications, 12(1212). doi:10.1038/s41467-021-21234-z

Ali, S. (2014). Social and Environmental Impact of the Rare Earth Industries. Resources, 3, 123-134. doi:10.3390/resources3010123

Andreev, O., Ivanov, V., Gorshkov, A., Miodushevskiy, P., & Andreev, P. (2016). Chemistry and Technology of Samarium Monosulfide. Eurasian Chemico-Technological Journa, 18, 55-65. doi:10.18321/ectj396

Arshi , P., Vahidi, E., & Zhao, F. (2018). Behind the scenes of clean energy – the environmental footprint of rare earth products. ACS Sustainable Chemistry & Engineering, 6(3), 3311-3320. doi:10.1021/acssuschemeng.7b03484

Asadollahzadeh, M., Torkaman, R., & Torab Mostaedi, M. (2020). Recovery of gadolinium ions based on supported ionic liquid membrane: parametric optimization via central composite design approach. International Journal of Environmental Science and Technology. doi:10.1007/s13762-020-02743-8

Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., & Moazami, F. (2020). Estimation of Performance with the Two Truncated Probability Density Functions, Case Study: Using Mixco Column to Extract Samarium and Gadolinium. SEPARATION SCIENCE AND TECHNOLOGY, 1-12. doi:10.1080/01496395.2020.1757713

Baharom, M., Rahman, M., Latif, A., Wang, P., Arof, H., & Harun, S. (2019). Lutetium oxide film as a passive saturable absorber for generating Q switched fiber laser at 1570 nm wavelength. Optical Fiber Technology, 50, 82-86. doi:10.1016/j.yofte.2019.03.003

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285-1303. doi:10.1016/j.gsf.2018.12.005

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. 10, 1285-1303. doi:10.1016/j.gsf.2018.12.005

Batapola, N., Dushyantha, N., Premasiri, H., Abeysinghe, A., Rohitha, L., Ratnayake, N., . . . Dharmaratne , P. (2020). A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. Journal of Asian Earth Sciences, 20, 1-15. doi:10.1016/j.jseaes.2020.104475

Cardoso, C., Almeida, J., Lopes, C., Trindade, T., Vale, C., & Pereira, E. (2019). Recovery of Rare Earth Elements by Carbon-Based Nanomaterials—A Review. Nanomaterials—A Review, 9(6), 814. doi:10.3390/nano9060814

Carmignani, L., Clementi, M., Signorini, C., Motta, G., Nazzani, S., & Palmisano, F. (2019). Safety and feasibility of thullium laser transurethral resection of prostate for the treatment of benign prostatic enlargement in overweight patients. Asian Journal of Urology, 6(3), 270-274. doi:10.1016/j.ajur.2018.05.004

Ciacci, L., Vassura, I., Cao, Z., Liu, G., & Passarini, F. (2019). Recovering the “new twin”: Analysis of secondary neodymium sources and recycling potentials in Europe. Resources, Conservation & Recycling, 142, 143-152. doi:10.1016/j.resconrec.2018.11.024

Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., . . . Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research, 15188-15194. doi:10.1007/s11356-015-5221-0

Dabhane, H., Ghotekar, S., Tambade, P., & Medhane, V. (2020). Plant mediated green synthesis of lanthanum oxide (La2O3) nanoparticles: A review. Asian Journal of Nanoscience and Materials , 3, 291-299. doi:10.26655/AJNANOMAT.2020.4.3

de Vargas Briao, G., Gurgel da Silva, M., & Adeodato Vieira, M. (2021). Expanded vermiculite as an alternative adsorbent for the dysprosium recovery. Journal of the Taiwan Institute of Chemical Engineers, 127, 228-235. doi:10.1016/j.jtice.2021.08.022

Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240, 504-510. doi:10.1016/j.jenvman.2019.04.002

Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240, 504-510. doi:10.1016/j.jenvman.2019.04.002

Ganguli, R., & Cook, D. (2018). Rare earths: A review of the landscape. MRS Energy & Sustainability, 5, 1-16. doi:10.1557/mre.2018.7

Garside , M. (2022, Marzo 4). Statista. Retrieved Mayo 27, 2022, from https://www.statista.com/statistics/270277/mining-of-rare-earths-by-country/

Ji, B., Li , Q., Huang, Q., & Zhang, W. (2021). Enhanced leaching recovery of rare earth elements from a phosphatic waste clay through calcination pretreatment . Journal of Cleaner Production, 319, 128654. doi:10.1016/j.jclepro.2021.128654

Jowitt, S., Werner, T., Weng, Z., & Mudd, G. (2018). Recycling of the rare earth elements. Green and Sustainable Chemistry, 13, 1-7. doi:10.1016/j.cogsc.2018.02.008

Jusza, A., Lipińska, L., Baran, M., Olszyna, A., Jastrzębska, A., Gil, M., . . . Piramidowicz, R. (2019). Praseodymium doped nanocrystals and nanocomposites for application in white light sources. Optical Materials, 95, 109247. doi:10.1016/j.optmat.2019.109247

Kalantzakos, S. (2020). The Race for Critical Minerals in an Era of Geopolitical Realignments. The International Spectator, 1-16. doi:10.1080/03932729.2020.1786926

Knudsen,, B. (2019). Laser Fibers for Holmium:YAG Lithotripsy: What Is Important and What Is New. Urologic Clinics, 46(2), 185-191. doi:10.1016/j.ucl.2018.12.004

Kumari, A., Kumar Jha, M., Deo Pathak, D., Chakravarty, S., & Lee, J.-c. (2018). Processes developed for the separation of europium (Eu) from various resources (Eu) from various resources. Separation & Purification Reviews , 1-31. doi:10.1080/15422119.2018.1454959

Li, X.-Y., Ge, J.-P., Chen, W.-Q., & Wang, P. (2019). Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resources, Conservation & Recycling, 145, 322-331. doi:10.1016/j.resconrec.2019.02.003

Marx, J., Schreiber, A., Zapp, P., & Walachowicz, F. (2018). Comparative Life Cycle Assessment of NdFeB Permanent Magnet Production from Different Rare Earth Deposits. ACS Sustainable Chemistry & Engineering, 6(5), 5858-5867. doi:10.1021/acssuschemeng.7b04165

Patel, K., Zhang, J., & Ren, S. (2018). Rare-earth-free high energy product manganese based magnetic materials. Nanoscale, 10(25), 11701-11718. doi:10.1039/C8NR01847B

Pillai, P. (2007). Naturally occurring radioactive material (NORM) in the extraction and processing of rare earths. In I. A. Agency (Ed.), Naturally Occurring Radioactive Material (NORM V) (pp. 197-221). Sevilla, España: International Atomic Energy Agency Vienna.

Rajive , G., & Douglas , R. (2018). Rare earths: A review of the landscape. MRS Energy & Sustainability, 5, 1-16. doi:10.1557/mre.2018.7

Ricketts, N. J. (2019). Scandium Solvent Extraction. Data Mining, Light Metals 2019, 1395-1401. doi:10.1007/978-3-030-05864-7_174

Schmid, M. (2019). Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn. Resources Policy, 63, 101457. doi:10.1016/j.resourpol.2019.101457

Scirè, S., & Palmisano, L. (2020). Cerium and cerium oxide: A brief introduction. In S. Scirè, & L. Palmisano, Cerium Oxide (CeO2): Synthesis, Properties and Applications (pp. 1-12). doi:10.1016/B978-0-12-815661-2.00001-3

Singh, K., Harish, S., Kristy, A., Shivani, V., J., A., Navaneethan, M., & Shimomura, M. (2018). Erbium doped TiO2 interconnected mesoporous spheres as an efficient visible light catalyst for photocatalytic applications. Applied Surface Science, 449, 755-763. doi:10.1016/j.apsusc.2018.01.279

Suwanmanee, U., & Ratthanapra, D. (2019). Life Cycle Assessment of Separation Methods of Cerium Oxide from Monazite Ore . The Italian Association of Chemical Engineering, 74, 907-912. doi: 10.3303/CET1974152

Swain, N., & Mishra, S. (2019). A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of Cleaner Production, 220, 884-898. doi:10.1016/j.jclepro.2019.02.094

Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., . . . Chang, Q. (2018). The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports, 8(1), 1-8. doi:10.1038/s41598-018-23948-5

Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., . . . Nozaki, T. (2018). The tremendous potential of deepsea mud as a source of rare-earth. Scientific Reports, 8(1). doi:10.1038/s41598-018-23948-5

Vogel, W., Van der Marck, S., & Versleijen, M. (2021). Challenges and future options for the production of lutetium-177. European Journal of Nuclear Medicine and Molecular Imaging, 48(8), 2329-2335. doi:10.1007/s00259-021-05392-2

Wei, Y., Salih, K., Hamza, M., Rodrìguez Castelòn , E., & Guibal , E. (2021). Novel phosphonate-functionalized composite sorbent for the recovery of lanthanum(III) and terbium(III) from synthetic solutions and ore leachate . Chemical Engineering Journal , 424. doi:10.1016/j.cej.2021.130500

Werker, J., Wulf, C., Zapp, P., Schreiber, A., & Marx, J. (2019). Social LCA for rare earth NdFeB permanent magnets. Sustainable Production and Consumption. doi:10.1016/j.spc.2019.07.006

Zaimes, G., Hubler, B., Wang, S., & Khanna, V. (2015). Environmental Life Cycle Perspective on Rare Earth Oxide Production. ACS Sustainable Chemistry & Engineering, 3(2), 237-244. doi:10.1021/sc500573b

Zaki Rashed, A., F. Tabbour, M., El-Meadawy, S., Anwar, T., Sarlan, A., Yupapin, P., & Amiri, I. (2019). The effect of using different materials on erbium-doped fiber amplifiers for indoor applications. Results in Physics, 15, 1-12. doi:10.1016/j.rinp.2019.102650

Publicado
2022-10-05
Cómo citar
Toache-Pérez, A. D., Bolarín-Miró, A. M., Sánchez-De Jesús, F., & Lapidus-Lavine, G. T. (2022). Una perspectiva global de las tierras raras. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 9(9), 23-29. https://doi.org/10.29057/aactm.v9i9.9476