A global perspective of rare earths

Keywords: Rare earths, Critical elements, Mining extraction, Geopolitical, New technologies

Abstract

Rare earth elements have been considered by various countries as critical elements, due to their technological importance that drives the modern world, in addition, although rare earths can be found in most of the world, there is currently a global shortage , due to the decreasing number of mineral deposits that can be economically profitable for their extraction and production. In this sense, little more than 50% of the amount of rare earths that are commercialized worldwide, come from China, which has created a monopoly in the production and export of said elements, in the same way it is important to mention that although certain elements of rare earths are essential for new technologies, their extraction processes generate gases and effluents that are dangerous for the environment and human beings, which is why various countries have implemented policies that make the production of rare earths more expensive, aiming to seek alternatives that are friendly to the environment and at the same time are economically profitable.

Downloads

Download data is not yet available.

References

Ali, S. (2014). Social and Environmental Impact of the Rare Earth Industries. Resources, 3, 123-134. doi:10.3390/resources3010123

Andreev, O., Ivanov, V., Gorshkov, A., Miodushevskiy, P., & Andreev, P. (2016). Chemistry and Technology of Samarium Monosulfide. Eurasian Chemico-Technological Journa, 18, 55-65. doi:10.18321/ectj396

Arshi , P., Vahidi, E., & Zhao, F. (2018). Behind the scenes of clean energy – the environmental footprint of rare earth products. ACS Sustainable Chemistry & Engineering, 6(3), 3311-3320. doi:10.1021/acssuschemeng.7b03484

Asadollahzadeh, M., Torkaman, R., & Torab Mostaedi, M. (2020). Recovery of gadolinium ions based on supported ionic liquid membrane: parametric optimization via central composite design approach. International Journal of Environmental Science and Technology. doi:10.1007/s13762-020-02743-8

Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., & Moazami, F. (2020). Estimation of Performance with the Two Truncated Probability Density Functions, Case Study: Using Mixco Column to Extract Samarium and Gadolinium. SEPARATION SCIENCE AND TECHNOLOGY, 1-12. doi:10.1080/01496395.2020.1757713.

Baharom, M., Rahman, M., Latif, A., Wang, P., Arof, H., & Harun, S. (2019). Lutetium oxide film as a passive saturable absorber for generating Q switched fiber laser at 1570 nm wavelength. Optical Fiber Technology, 50, 82-86. doi:10.1016/j.yofte.2019.03.003

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285-1303. doi:10.1016/j.gsf.2018.12.005

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. 10, 1285-1303. doi:10.1016/j.gsf.2018.12.005

Batapola, N., Dushyantha, N., Premasiri, H., Abeysinghe, A., Rohitha, L., Ratnayake, N., . . . Dharmaratne , P. (2020). A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. Journal of Asian Earth Sciences, 20, 1-15. doi:10.1016/j.jseaes.2020.104475.

Binnemans, K., Jones, P. T., Müller, T., & Yurramendi, L. (2018). Rare Earths and the Balance Problem: How to Deal with Changing Markets? Journal of Sustainable Metallurgy, 4(1). doi:10.1007/s40831-018-0162-8

Cardoso, C., Almeida, J., Lopes, C., Trindade, T., Vale, C., & Pereira, E. (2019). Recovery of Rare Earth Elements by Carbon-Based Nanomaterials—A Review. Nanomaterials—A Review, 9(6), 814. doi:10.3390/nano9060814

Carmignani, L., Clementi, M., Signorini, C., Motta, G., Nazzani, S., & Palmisano, F. (2019). Safety and feasibility of thullium laser transurethral resection of prostate for the treatment of benign prostatic enlargement in overweight patients. Asian Journal of Urology, 6(3), 270-274. doi:10.1016/j.ajur.2018.05.004

Ciacci, L., Vassura, I., Cao, Z., Liu, G., & Passarini, F. (2019). Recovering the “new twin”: Analysis of secondary neodymium sources and recycling potentials in Europe. Resources, Conservation & Recycling, 142, 143-152. doi:10.1016/j.resconrec.2018.11.024

Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., . . . Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research, 15188-15194. doi:10.1007/s11356-015-5221-0

Dabhane, H., Ghotekar, S., Tambade, P., & Medhane, V. (2020). Plant mediated green synthesis of lanthanum oxide (La2O3) nanoparticles: A review. Asian Journal of Nanoscience and Materials , 3, 291-299. doi:10.26655/AJNANOMAT.2020.4.3

De Vargas Briao, G., Gurgel da Silva, M., & Adeodato Vieira, M. (2021). Expanded vermiculite as an alternative adsorbent for the dysprosium recovery. Journal of the Taiwan Institute of Chemical Engineers, 127, 228-235. doi:10.1016/j.jtice.2021.08.022

Engi, M. (2017). Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite. Reviews in Mineralogy & Geochemistry, 83, 365-418. doi:10.2138/rmg.2017.83.12

Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240, 504-510. doi:10.1016/j.jenvman.2019.04.002

Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240, 504-510. doi:10.1016/j.jenvman.2019.04.002

Ganguli, R., & Cook, D. (2018). Rare earths: A review of the landscape. MRS Energy & Sustainability, 5, 1-16. doi:10.1557/mre.2018.7

Garside , M. (2022, Marzo 4). Statista. Retrieved Mayo 27, 2022, from https://www.statista.com/statistics/270277/mining-of-rare-earths-by-country/

Hou, W., Liu, H., Wang, H., & Wu, F. (2018). Structure and patterns of the international rare earths trade: A complex network analysis. Resources Policy, 55, 133-142. doi:10.1016/j.resourpol.2017.11.008

Ji, B., Li , Q., Huang, Q., & Zhang, W. (2021). Enhanced leaching recovery of rare earth elements from a phosphatic waste clay through calcination pretreatment . Journal of Cleaner Production, 319, 128654. doi:10.1016/j.jclepro.2021.128654

Jowitt, S., Werner, T., Weng, Z., & Mudd, G. (2018). Recycling of the rare earth elements. Green and Sustainable Chemistry, 13, 1-7. doi:10.1016/j.cogsc.2018.02.008

Jusza, A., Lipińska, L., Baran, M., Olszyna, A., Jastrzębska, A., Gil, M., . . . Piramidowicz, R. (2019). Praseodymium doped nanocrystals and nanocomposites for application in white light sources. Optical Materials, 95, 109247. doi:10.1016/j.optmat.2019.109247

Kalantzakos, S. (2020). The Race for Critical Minerals in an Era of Geopolitical Realignments. The International Spectator, 1-16. doi:10.1080/03932729.2020.1786926

Kamenopoulos, S., & Agioutantis, Z. (2019). Geopolitical Risk Assessment of Countries with Rare Earth Element Deposits. Mining, Metallurgy & Exploration. doi:10.1007/s42461-019-00158-9

Knudsen,, B. (2019). Laser Fibers for Holmium:YAG Lithotripsy: What Is Important and What Is New. Urologic Clinics, 46(2), 185-191. doi:10.1016/j.ucl.2018.12.004

Kumari, A., Kumar Jha, M., Deo Pathak, D., Chakravarty, S., & Lee, J.-c. (2018). Processes developed for the separation of europium (Eu) from various resources (Eu) from various resources. Separation & Purification Reviews , 1-31. doi:10.1080/15422119.2018.1454959

Li, X.-Y., Ge, J.-P., Chen, W.-Q., & Wang, P. (2019). Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resources, Conservation & Recycling, 145, 322-331. doi:10.1016/j.resconrec.2019.02.003

Marx, J., Schreiber, A., Zapp, P., & Walachowicz, F. (2018). Comparative Life Cycle Assessment of NdFeB Permanent Magnet Production from Different Rare Earth Deposits. ACS Sustainable Chemistry & Engineering, 6(5), 5858-5867. doi:10.1021/acssuschemeng.7b04165

Moon, B., Jin Kim, S., Lee, S., Lee, A., Lee, H., Lee, D., . . . Lee, S.-K. (2019). Rare-Earth-Element-Ytterbium-Substituted Lead-Free Inorganic Perovskite Nanocrystals for Optoelectronic Applications. Advanced Materials, 1901716. doi:10.1002/adma.201901716

Overland, I. (2019). The geopolitics of renewable energy: Debunking four emerging myths. Energy Research & Social Science, 49, 36-40. doi:10.1016/j.erss.2018.10.018

Patel, K., Zhang, J., & Ren, S. (2018). Rare-earth-free high energy product manganese based magnetic materials. Nanoscale, 10(25), 11701-11718. doi:10.1039/C8NR01847B

Pillai, P. (2007). Naturally occurring radioactive material (NORM) in the extraction and processing of rare earths. In I. A. Agency (Ed.), Naturally Occurring Radioactive Material (NORM V) (pp. 197-221). Sevilla, España: International Atomic Energy Agency Vienna.

Rajive , G., & Douglas , R. (2018). Rare earths: A review of the landscape. MRS Energy & Sustainability, 5, 1-16. doi:10.1557/mre.2018.7

Ricketts, N. J. (2019). Scandium Solvent Extraction. Data Mining, Light Metals 2019, 1395-1401. doi:10.1007/978-3-030-05864-7_174

Schmid, M. (2019). Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn. Resources Policy, 63, 101457. doi:10.1016/j.resourpol.2019.101457

Scirè, S., & Palmisano, L. (2020). Cerium and cerium oxide: A brief introduction. In S. Scirè, & L. Palmisano, Cerium Oxide (CeO2): Synthesis, Properties and Applications (pp. 1-12). doi:10.1016/B978-0-12-815661-2.00001-3

Singh, K., Harish, S., Kristy, A., Shivani, V., J., A., Navaneethan, M., & Shimomura, M. (2018). Erbium doped TiO2 interconnected mesoporous spheres as an efficient visible light catalyst for photocatalytic applications. Applied Surface Science, 449, 755-763. doi:10.1016/j.apsusc.2018.01.279

Suwanmanee, U., & Ratthanapra, D. (2019). Life Cycle Assessment of Separation Methods of Cerium Oxide from Monazite Ore . The Italian Association of Chemical Engineering, 74, 907-912. doi: 10.3303/CET1974152

Swain, N., & Mishra, S. (2019). A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of Cleaner Production, 220, 884-898. doi:10.1016/j.jclepro.2019.02.094

Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., . . . Chang, Q. (2018). The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports, 8(1), 1-8. doi:10.1038/s41598-018-23948-5

Terada, N., & Mamiya, H. (2021). High-efficiency magnetic refrigeration using holmium. Nature Communications, 12(1212). doi:10.1038/s41467-021-21234-z

Binnemans, K., Jones, P. T., Müller, T., & Yurramendi, L. (2018). Rare Earths and the Balance Problem: How to Deal with Changing Markets? Journal of Sustainable Metallurgy, 4(1). doi:10.1007/s40831-018-0162-8

Engi, M. (2017). Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite. Reviews in Mineralogy & Geochemistry, 83, 365-418. doi:10.2138/rmg.2017.83.12

Hou, W., Liu, H., Wang, H., & Wu, F. (2018). Structure and patterns of the international rare earths trade: A complex network analysis. Resources Policy, 55, 133-142. doi:10.1016/j.resourpol.2017.11.008

Kamenopoulos, S., & Agioutantis, Z. (2019). Geopolitical Risk Assessment of Countries with Rare Earth Element Deposits. Mining, Metallurgy & Exploration. doi:10.1007/s42461-019-00158-9

Moon, B., Jin Kim, S., Lee, S., Lee, A., Lee, H., Lee, D., . . . Lee, S.-K. (2019). Rare-Earth-Element-Ytterbium-Substituted Lead-Free Inorganic Perovskite Nanocrystals for Optoelectronic Applications. Advanced Materials, 1901716. doi:10.1002/adma.201901716

Overland, I. (2019). The geopolitics of renewable energy: Debunking four emerging myths. Energy Research & Social Science, 49, 36-40. doi:10.1016/j.erss.2018.10.018

Terada, N., & Mamiya, H. (2021). High-efficiency magnetic refrigeration using holmium. Nature Communications, 12(1212). doi:10.1038/s41467-021-21234-z

Ali, S. (2014). Social and Environmental Impact of the Rare Earth Industries. Resources, 3, 123-134. doi:10.3390/resources3010123

Andreev, O., Ivanov, V., Gorshkov, A., Miodushevskiy, P., & Andreev, P. (2016). Chemistry and Technology of Samarium Monosulfide. Eurasian Chemico-Technological Journa, 18, 55-65. doi:10.18321/ectj396

Arshi , P., Vahidi, E., & Zhao, F. (2018). Behind the scenes of clean energy – the environmental footprint of rare earth products. ACS Sustainable Chemistry & Engineering, 6(3), 3311-3320. doi:10.1021/acssuschemeng.7b03484

Asadollahzadeh, M., Torkaman, R., & Torab Mostaedi, M. (2020). Recovery of gadolinium ions based on supported ionic liquid membrane: parametric optimization via central composite design approach. International Journal of Environmental Science and Technology. doi:10.1007/s13762-020-02743-8

Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., & Moazami, F. (2020). Estimation of Performance with the Two Truncated Probability Density Functions, Case Study: Using Mixco Column to Extract Samarium and Gadolinium. SEPARATION SCIENCE AND TECHNOLOGY, 1-12. doi:10.1080/01496395.2020.1757713

Baharom, M., Rahman, M., Latif, A., Wang, P., Arof, H., & Harun, S. (2019). Lutetium oxide film as a passive saturable absorber for generating Q switched fiber laser at 1570 nm wavelength. Optical Fiber Technology, 50, 82-86. doi:10.1016/j.yofte.2019.03.003

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285-1303. doi:10.1016/j.gsf.2018.12.005

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. 10, 1285-1303. doi:10.1016/j.gsf.2018.12.005

Batapola, N., Dushyantha, N., Premasiri, H., Abeysinghe, A., Rohitha, L., Ratnayake, N., . . . Dharmaratne , P. (2020). A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. Journal of Asian Earth Sciences, 20, 1-15. doi:10.1016/j.jseaes.2020.104475

Cardoso, C., Almeida, J., Lopes, C., Trindade, T., Vale, C., & Pereira, E. (2019). Recovery of Rare Earth Elements by Carbon-Based Nanomaterials—A Review. Nanomaterials—A Review, 9(6), 814. doi:10.3390/nano9060814

Carmignani, L., Clementi, M., Signorini, C., Motta, G., Nazzani, S., & Palmisano, F. (2019). Safety and feasibility of thullium laser transurethral resection of prostate for the treatment of benign prostatic enlargement in overweight patients. Asian Journal of Urology, 6(3), 270-274. doi:10.1016/j.ajur.2018.05.004

Ciacci, L., Vassura, I., Cao, Z., Liu, G., & Passarini, F. (2019). Recovering the “new twin”: Analysis of secondary neodymium sources and recycling potentials in Europe. Resources, Conservation & Recycling, 142, 143-152. doi:10.1016/j.resconrec.2018.11.024

Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., . . . Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research, 15188-15194. doi:10.1007/s11356-015-5221-0

Dabhane, H., Ghotekar, S., Tambade, P., & Medhane, V. (2020). Plant mediated green synthesis of lanthanum oxide (La2O3) nanoparticles: A review. Asian Journal of Nanoscience and Materials , 3, 291-299. doi:10.26655/AJNANOMAT.2020.4.3

de Vargas Briao, G., Gurgel da Silva, M., & Adeodato Vieira, M. (2021). Expanded vermiculite as an alternative adsorbent for the dysprosium recovery. Journal of the Taiwan Institute of Chemical Engineers, 127, 228-235. doi:10.1016/j.jtice.2021.08.022

Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240, 504-510. doi:10.1016/j.jenvman.2019.04.002

Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240, 504-510. doi:10.1016/j.jenvman.2019.04.002

Ganguli, R., & Cook, D. (2018). Rare earths: A review of the landscape. MRS Energy & Sustainability, 5, 1-16. doi:10.1557/mre.2018.7

Garside , M. (2022, Marzo 4). Statista. Retrieved Mayo 27, 2022, from https://www.statista.com/statistics/270277/mining-of-rare-earths-by-country/

Ji, B., Li , Q., Huang, Q., & Zhang, W. (2021). Enhanced leaching recovery of rare earth elements from a phosphatic waste clay through calcination pretreatment . Journal of Cleaner Production, 319, 128654. doi:10.1016/j.jclepro.2021.128654

Jowitt, S., Werner, T., Weng, Z., & Mudd, G. (2018). Recycling of the rare earth elements. Green and Sustainable Chemistry, 13, 1-7. doi:10.1016/j.cogsc.2018.02.008

Jusza, A., Lipińska, L., Baran, M., Olszyna, A., Jastrzębska, A., Gil, M., . . . Piramidowicz, R. (2019). Praseodymium doped nanocrystals and nanocomposites for application in white light sources. Optical Materials, 95, 109247. doi:10.1016/j.optmat.2019.109247

Kalantzakos, S. (2020). The Race for Critical Minerals in an Era of Geopolitical Realignments. The International Spectator, 1-16. doi:10.1080/03932729.2020.1786926

Knudsen,, B. (2019). Laser Fibers for Holmium:YAG Lithotripsy: What Is Important and What Is New. Urologic Clinics, 46(2), 185-191. doi:10.1016/j.ucl.2018.12.004

Kumari, A., Kumar Jha, M., Deo Pathak, D., Chakravarty, S., & Lee, J.-c. (2018). Processes developed for the separation of europium (Eu) from various resources (Eu) from various resources. Separation & Purification Reviews , 1-31. doi:10.1080/15422119.2018.1454959

Li, X.-Y., Ge, J.-P., Chen, W.-Q., & Wang, P. (2019). Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resources, Conservation & Recycling, 145, 322-331. doi:10.1016/j.resconrec.2019.02.003

Marx, J., Schreiber, A., Zapp, P., & Walachowicz, F. (2018). Comparative Life Cycle Assessment of NdFeB Permanent Magnet Production from Different Rare Earth Deposits. ACS Sustainable Chemistry & Engineering, 6(5), 5858-5867. doi:10.1021/acssuschemeng.7b04165

Patel, K., Zhang, J., & Ren, S. (2018). Rare-earth-free high energy product manganese based magnetic materials. Nanoscale, 10(25), 11701-11718. doi:10.1039/C8NR01847B

Pillai, P. (2007). Naturally occurring radioactive material (NORM) in the extraction and processing of rare earths. In I. A. Agency (Ed.), Naturally Occurring Radioactive Material (NORM V) (pp. 197-221). Sevilla, España: International Atomic Energy Agency Vienna.

Rajive , G., & Douglas , R. (2018). Rare earths: A review of the landscape. MRS Energy & Sustainability, 5, 1-16. doi:10.1557/mre.2018.7

Ricketts, N. J. (2019). Scandium Solvent Extraction. Data Mining, Light Metals 2019, 1395-1401. doi:10.1007/978-3-030-05864-7_174

Schmid, M. (2019). Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn. Resources Policy, 63, 101457. doi:10.1016/j.resourpol.2019.101457

Scirè, S., & Palmisano, L. (2020). Cerium and cerium oxide: A brief introduction. In S. Scirè, & L. Palmisano, Cerium Oxide (CeO2): Synthesis, Properties and Applications (pp. 1-12). doi:10.1016/B978-0-12-815661-2.00001-3

Singh, K., Harish, S., Kristy, A., Shivani, V., J., A., Navaneethan, M., & Shimomura, M. (2018). Erbium doped TiO2 interconnected mesoporous spheres as an efficient visible light catalyst for photocatalytic applications. Applied Surface Science, 449, 755-763. doi:10.1016/j.apsusc.2018.01.279

Suwanmanee, U., & Ratthanapra, D. (2019). Life Cycle Assessment of Separation Methods of Cerium Oxide from Monazite Ore . The Italian Association of Chemical Engineering, 74, 907-912. doi: 10.3303/CET1974152

Swain, N., & Mishra, S. (2019). A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of Cleaner Production, 220, 884-898. doi:10.1016/j.jclepro.2019.02.094

Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., . . . Chang, Q. (2018). The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports, 8(1), 1-8. doi:10.1038/s41598-018-23948-5

Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., . . . Nozaki, T. (2018). The tremendous potential of deepsea mud as a source of rare-earth. Scientific Reports, 8(1). doi:10.1038/s41598-018-23948-5

Vogel, W., Van der Marck, S., & Versleijen, M. (2021). Challenges and future options for the production of lutetium-177. European Journal of Nuclear Medicine and Molecular Imaging, 48(8), 2329-2335. doi:10.1007/s00259-021-05392-2

Wei, Y., Salih, K., Hamza, M., Rodrìguez Castelòn , E., & Guibal , E. (2021). Novel phosphonate-functionalized composite sorbent for the recovery of lanthanum(III) and terbium(III) from synthetic solutions and ore leachate . Chemical Engineering Journal , 424. doi:10.1016/j.cej.2021.130500

Werker, J., Wulf, C., Zapp, P., Schreiber, A., & Marx, J. (2019). Social LCA for rare earth NdFeB permanent magnets. Sustainable Production and Consumption. doi:10.1016/j.spc.2019.07.006

Zaimes, G., Hubler, B., Wang, S., & Khanna, V. (2015). Environmental Life Cycle Perspective on Rare Earth Oxide Production. ACS Sustainable Chemistry & Engineering, 3(2), 237-244. doi:10.1021/sc500573b

Zaki Rashed, A., F. Tabbour, M., El-Meadawy, S., Anwar, T., Sarlan, A., Yupapin, P., & Amiri, I. (2019). The effect of using different materials on erbium-doped fiber amplifiers for indoor applications. Results in Physics, 15, 1-12. doi:10.1016/j.rinp.2019.102650

Published
2022-10-05
How to Cite
TOACHE, A. D., Bolarín-Miró, A. M., Sánchez-De Jesús, F., & Lapidus-Lavine, G. T. (2022). A global perspective of rare earths. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 9(9), 23-29. https://doi.org/10.29057/aactm.v9i9.9476