NO3- sorption kinetics on smectite-illite

Keywords: Smectite, Illite, Sorption, Kinetic, Nitrates

Abstract

In the present research work, the kinetics of nitrate sorption was evaluated at room temperature in aqueous NaNO3 solutions with NO3- concentrations of 25, 50, 100, and 200 mg/L with pH values of 6, 7, and 8, using smectite-illite purified from a rhyolitic tuff located in the municipality of Epazoyucan, Hidalgo, with a relative abundance of 36.52% smectite, 8.69% illite, 39.13% quartz and 15.65% sodium plagioclase, without considering the amorphous or minority phases not detected by X-ray diffraction. The kinetic curves determined experimentally indicate a greater sorption of NO3- in the highest concentration solutions (200 mg/L of NO3-), particularly at pH values of seven, with the maximum amount of NO3- retained being 0.0903 meq/g (5.5995mg/g). Although the pseudo first order and pseudo second order kinetic models were used, it is considered that the pseudo second order kinetics have a better correlation with the experimental data.

Downloads

Download data is not yet available.

References

Ahrouch, M., Gatica, J. M., Draoui, K., Bellido-Milla, D., & Vidal, H. (2022). Clay honeycomb monoliths for the simultaneous retention of lead and cadmium in water. Environ. Technol. Innov., 27, 102765, 1-19.

Alshameri, A., He, H., Zhu, J., Xi, Y., Zhu, R., Ma, L., & Tao, Q. (2018). Adsorption of ammonium by different natural clay minerals: Characterization, kinetics, and adsorption isotherms. Appl. Clay Sci.,159, 83-93. https://doi.org/10.1016/j.clay.2017.11.007

Battas, A., Gaidoumi, A. E., Ksakas, A., & Kherbeche, A. (2019). Adsorption study for the removal of nitrate from water using local clay. The Scientific World Journal, 2019, 1-10. https://doi.org/10.1155/2019/9529618

Bujdák, J. (2020). Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism. Appl. Clay Sci., 191,105630, 1-7. https://doi.org/10.1016/j.clay.2020.105630

Caillére, S. & Hénin, S. (1963). Minéralogie des Argiles, Masson et Cie. Editeurs, Belgique.

Cruz-Sánchez, M., Ávila-Ortíz, A., Mora-Monzalvo, V., Girón-García, P., & Salcedo-Luna, M. C. (2020). Hidroquímica e índice de calidad del Acuífero del Valle de Tulancingo, Hidalgo, México. Revista Tediq, 6(6),147-156.

Cruz-Sánchez, M., Becerril-Enciso, C., Girón-García, P., & Salcedo-Luna, M. C. (2021). Identificación de esmectita-illita en rocas volcánicas del municipio de Epazoyucan, Hidalgo. Revista Tediq, 7(7), 368-379.

Dähn, R., Baeyens, B., & Fernandes, M. M. (2021). Zn uptake by illite and argillaceous rocks. Geochim. Cosmochim. Acta, 312, 180-193.

Duc, M., Gaboriaud, F., & Thomas, F. (2005). Sensitivity of the acid–base properties of clays to the methods of preparation and measurement: 1. Literature review. J. Colloid Interface Sci., 289(1), 139-147.

Eren, E., & Afsin, B. (2008). An investigation of Cu (II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. J. Hazard. Mater., 151(2-3), 682-691.

El Ouardi, M., Qourzal, S., Alahiane, S., Assabbane, A., & Douch, J. (2015). Effective removal of nitrates ions from aqueous solution using new clay as potential low-cost adsorbent. J. Encapsulation Adsorpt. Sci., 5(04), 178-190. http://dx.doi.org/10.4236/jeas.2015.54015

Ewis, D., Ba-Abbad, M. M., Benamor, A., & El-Naas, M. H. (2022). Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Appl. Clay Sci., 229, 106686, 1-31. https://doi.org/10.1016/j.clay.2022.106686

Fan, T., Wang, M., Wang, X., Chen, Y., Wang, S., Zhan, H., Chen, X., Lu, A., & Zha, S. (2021). Experimental study of the adsorption of nitrogen and phosphorus by natural clay minerals. Adsorp. Sci. Technol., 2021, 1-14. https://doi.org/10.1155/2021/4158151

Ferreira, J. G., Andersen, J. H., Borja, A., Bricker, S. B., Camp, J., Da Silva, M. C., Garcés, E., Heiskanen, A.S., Humborg, Ch, Ignatiades, L., Lancelot, Ch., Menesguen, A., Tett, P., Hoepffner, N., & Claussen, U. (2011). Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci., 93(2), 117-131.

Hedström, M., Hansen, E. E., & Nilsson, U. (2016). Montmorillonite phase behavior. Relevance for buffer erosion in dilute groundwater. Clay Technology AB.

Hillier, S. (2000). Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner., 35(1), 291-302.

Hillier, S. (2003). Quantitative analysis of clay and other minerals in sandstones by X‐ray powder diffraction (XRPD). Int. Assoc. Sedimentol. Spec. Public., 34, 213-251.

Ho, Y. S. (2006). Review of second-order models for adsorption systems. J. Hazard. Mater., B136, 681-689.

Ho, Y.S., & McKay, G. (1999). Pseudo-second order model for sorption process. Process Biochem., 34 (5), 451-465.

Ho, Y.S., & Wang, C.C. (2004). Pseudo-isotherms for sorption of cadmium ion onto tree fern. Process. Biochem., 39(6), 759-763.

Hubbard, C. R., & Snyder, R. L. (1988). RIR-measurement and use in quantitative XRD. Powder Diffr., 3(2), 74-77.

Hussain, S. T., & Ali, S. A. K. (2021). Removal of heavy metal by ion exchange using bentonite clay. J. Ecol. Eng., 22(1), 104-111. https://doi.org/10.12911/22998993/128865

Ibigbami, T. B., Adeola, A. O., Olawade, D. B., Ore, O. T., Isaac, B. O., & Sunkanmi, A. A. (2022). Pristine and activated bentonite for toxic metal removal from wastewater. Water Pract. Technol., 17(3), 784-797. https://doi: 10.2166/wpt.2022.018

Ismadji, S., Soetaredjo, F. E., & Ayucitra, A. (2015). Clay materials for environmental remediation. Springer, Germany.

Keller, W. D., Reynolds, R. C., & Inoue, A. (1986). Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy. Clays Clay Miner., 34, 187-197.

Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environ. Health Perspect., 108(7), 675-678.

Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1-39.

Lazarević, S., Janković-Častvan, I., Jovanović, D., Milonjić, S., Janaćković, D., & Petrović, R. (2007). Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Appl. Clay Sci., 37(1-2), 47-57.

Lazaratou, C. V., Vayenas, D. V., & Papoulis, D. (2020). The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review. Appl. Clay Sci., 185, 105377, 1-18. https://doi.org/10.1016/j.clay.2019.105377

Licón-Trillo, L. P., Lee-Rodríguez, V., & Lerma-Molina, J.N. (2001). Manual de análisis de suelo-agua-planta: diagnóstico, interpretación y recomendaciones. Universidad Autónoma de Chiapas, México.

Liu, Y., Zhang, X., & Wang, J. (2022). A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance, and mechanism. Chemosphere, 291, 132728, 1-22. https://doi.org/10.1016/j.chemosphere.2021.132728

Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity, 3rd Edition, Chapman-Hall, Great Britain.

Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data, 9(1), 181-192.

Grazulis, S., Chateigner, D., Downs, R. T., Yokochi, A. T., Quiros, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Crystallogr., 42, 726-729. doi: 10.1107/S0021889809016690

Majumdar, D. (2003). The blue baby syndrome: nitrate poisoning in humans. Resonance, 8(10), 20-30.

MATCH! ® . (2011). Phase identification from powder diffraction. Crystal Impact V1.11j

Meunier, A. (2005). Clays. Springer, Germany.

Milonjić, S. K., Ruvarac, A. L., & Šušić, M. V. (1975). The heat of immersion of natural magnetite in aqueous solutions. Thermochim. Acta, 11(3), 261-266.

Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 44(6), 1272-1276.

Musie, W., & Gonfa, G. (2022). Adsorption of sodium from saline water with natural and acid activated Ethiopian bentonite. Results in Engineering, 14, 100440, 1-10. https://doi.org/10.1016/j.rineng.2022.100440

Organización de las Naciones Unidas para la Agricultura y la Alimentación, FAO. (2006). Fertilizer use by crop—FAO fertilizer and plant nutrition bulletin 17.

Palomino, F. (1997). Nueva técnica colorimétrica para la determinación de nitratos en el plasma. Rev. Fac. Med. Univ. Nac. Colomb., 45(2), 63-69.

Preocanin, T., & Kallay, N. (1998). Application of mass titration to determination of surface charge of metal oxides. Croat. Chem. Acta, 71(4), 1117-1125.

Ramseyer, K., & Boles, J. R. (1986). Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin Basin, California. Clays Clay Miner., 34(2), 115-124.

Rathore, P., & Verma, R. (2021). Sorption capacity of toxic heavy metal Cr (VI) ion on bentonite clay from aqueous solution by kinetic and thermodynamic studies. Orient. J. Chem., 37(5), 1096-1101.

Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Eng. Technol., 1, 100032, 1-13. https://doi.org/10.1016/j.clet.2020.100032

Sing, K. S. W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure & Appl. Chem., 57(4), 603-619.

Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from here? Trends Ecol. Evol., 24(4), 201-207.

Washington State Department of Health. (2022). Fact sheet: nitrate in drinking water. Available at: https://doh.wa.gov/sites/default/files/legacy/Documents/Pubs//331-214.pdf

WHO, World Health Organization. (2011). Guidelines for drinking-water quality. 4th Ed. WHO Press, p. 307-442.

Williams, A. E., Lund, L. J., Johnson, J. A., & Kabala, Z. J. (1998). Natural and anthropogenic nitrate contamination of groundwater in a rural community, California. Environ. Sci. Technol., 32(1), 32-39.

Zamparas, M., Kyriakopoulos, G. L., Drosos, M., & Kapsalis, V. C. (2021). Phosphate and ammonium removal from wastewaters using natural-based innovative bentonites impacting on resource recovery and circular economy. Molecules, 26(21), 6684, 1-16. https://doi.org/10.3390/molecules26216684

Published
2023-10-05
How to Cite
Cruz-Sánchez, M., Becerril-Enciso, C., Alcaraz-Cienfuegos, J., Girón-García, M. P., & Esquivel-Macías, C. (2023). NO3- sorption kinetics on smectite-illite. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 10(10), 27-37. https://doi.org/10.29057/aactm.v10i10.11438