Effect of the roughness of the substrate on the properties of Zn-Al coatings deposited by thermal spraying on ductile iron, additive manufacturing steel and ABS

Keywords: Ductile iron, Additive manufacturing steel, ABS, Roughness, Adhesion strength

Abstract

This research presents the results on the effects of the deposition of a Zn-Al alloy on ductile iron, additive manufacturing steel, and ABS substrates, these coatings were obtained by flame thermal spray. Elemental composition characterizations were performed by atomic emission spectroscopy and EDS, morphological using SEM, structural by XRD, of roughness in the substrate with a Mitutoyo SJ 310 roughness tester and interferometry with white light, the adhesion was evaluated by means of the pull-off test. The results obtained show that the coatings do not undergo changes in their crystalline structure and elemental composition with respect to the precursor material, they also have good homogeneity and a good interface, obtaining an average value of maximum adhesion strength close to 900 N for ABS. A directly proportional relationship was found between the surface roughness generated in the substrate with the adhesion of the coating.

Downloads

Download data is not yet available.

References

P.B. Chikali, V.D. Shinde, Analysis of machinability in ductile iron casting, Mater. Today Proc. 27 (2019) 584–588. https://doi.org/10.1016/j.matpr.2019.12.064.

ASTM International, Standard Specification for Ductile Iron Castings, Current. 83 (2019) 4–9. https://doi.org/10.1520/A0842-11A.2.

S.H. Avner, Introduction To Physical Metallurgy Second Edition, McGraw Hill, 1974.

O.J. Akinribide, S.O. Akinwamide, O.O. Ajibola, B.A. Obadele, S.O. oluwagbenga Olusunle, P.A. Olubambi, Corrosion behavior of ductile and austempered ductile cast iron in 0.01M and 0.05M NaCl Environments., Procedia Manuf. 30 (2019) 167–172. https://doi.org/10.1016/j.promfg.2019.02.024.

S. Yin, J. Cizek, X. Suo, W. li, H. Liao, Thermal Spray Technology, Adv. Mater. Sci. Eng. 2019 (2019) 1–2. https://doi.org/10.1155/2019/8654764.

D.G. Agredo Diaz, N. Ortiz Godoy, R. Valdez Navarro, A. Barba Pingarrón, J.J. Olaya Flórez, J.R. González Parra, A. Covelo Villar, M.A. Hernández Gallegos, Caracterización electroquímica de recubrimientos Zn-Al sobre fundición nodular grado 2, obtenidos por proyección térmica por flama con alambre, Av. Investig. En Ing. 17 (2020). https://doi.org/10.18041/1794-4953/avances.1.5747.

J.J.C Cervantes, L.H Ruiz, A.P Balderas, R.R Hernández, F.V Martínez, A.G. Sánchez, J.C Rodríguez, J.L.R Espinoza, Desarrollo de un proceso de manufactura aditiva (AM) de metal y determinación de propiedades de las piezas obtenidas, Memoria XXIV Congreso Internacional Anual Sociedad Mexicana de Ingeniería Mecánica. (2018) 20-27. http://somim.org.mx/memorias/

D. Jia, F. Li, Y. Zhang, 3D-printing process design of lattice compressor impeller based on residual stress and deformation, Sci. Rep. 10 (2020) 1–11. https://doi.org/10.1038/s41598-019-57131-1.

T. Duda, L.V. Raghavan, 3D Metal Printing Technology, IFAC-PapersOnLine. 49 (2016) 103–110. https://doi.org/10.1016/j.ifacol.2016.11.111.

D.G. Agredo Diaz, A. Barba Pingarrón, J.J. Olaya Florez, J.R. González Parra, J. Cervantes Cabello, I. Angarita Moncaleano, A. Covelo Villar, M.Á. Hernández Gallegos, Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution, Mater. Lett. 275 (2020) 128159. https://doi.org/https://doi.org/10.1016/j.matlet.2020.128159.

O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, H. Warth, Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene, Polymer (Guildf). 45 (2004) 739–748. https://doi.org/10.1016/j.polymer.2003.12.013.

A.M. Donald, E.J. Kramer, Plastic deformation mechanisms in poly(acrylonitrile-butadiene styrene) [ABS], J. Mater. Sci. 17 (1982) 1765–1772. https://doi.org/10.1007/BF00540805.

A. Viscusi, M. Durante, A. Astarita, L. Boccarusso, L. Carrino, A.S. Perna, Experimental Evaluation of Metallic Coating on Polymer by Cold Spray, Procedia Manuf. 47 (2020) 761–765. https://doi.org/10.1016/j.promfg.2020.04.232.

P.C. King, A.J. Poole, S. Horne, R. de Nys, S. Gulizia, M.Z. Jahedi, Embedment of copper particles into polymers by cold spray, Surf. Coatings Technol. 216 (2013) 60–67. https://doi.org/10.1016/j.surfcoat.2012.11.023.

B.E. Tiganis, S. Burn, P. Davis, A.J. Hill, Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends, Polym. Degrad. Stab. 76 (2002) 425–434. https://doi.org/10.1016/S0141-3910(02)00045-9.

I.S. Organization, ISO 4624 Pull-off test for adhesion, (2003) 15.

K.H.S. Silva, J.R. Carneiro, R.S. Coelho, H. Pinto, P. Brito, Influence of shot peening on residual stresses and tribological behavior of cast and austempered ductile iron, Wear. 440–441 (2019). https://doi.org/10.1016/j.wear.2019.203099.

J. Sun, Q.G. Fu, T. Li, G.P. Zhang, R.M. Yuan, Oxidation behavior of thermally sprayed Mo-Si based composite: Effect of metastable phase, porosity and residual stress, J. Alloys Compd. 776 (2019) 712–721. https://doi.org/10.1016/j.jallcom.2018.10.309.

B. Lv, X. Fan, D. Li, T.J. Wang, Towards enhanced sintering resistance: Air-plasma-sprayed thermal barrier coating system with porosity gradient, J. Eur. Ceram. Soc. 38 (2018) 1946–1956. https://doi.org/10.1016/j.jeurceramsoc.2017.12.008.

R. Valdez, A. Barba, M. Trujillo, R. González, A. Covelo, A. Miguel, J.L. Romero, E. Ramos, D.G. Agredo Diaz, J.J. Olaya, Obtención de recubrimientos Zn-Al sobre ABS , mediante proyección térmica por flama, sin el uso de procesos químicos de acondicionamiento superficial, SOMI. (2019) 1–11. http://www.iim.unam.mx/unidadmorelia/.

K. Wang, S. Wang, T. Xiong, D. Wen, G. Wang, W. Liu, H. Du, Properties of Zn-Al-Mg-TiO2 coating prepared by cold spraying, Surf. Coatings Technol. 387 (2020) 125549. https://doi.org/10.1016/j.surfcoat.2020.125549.

H.L. Yao, Z.H. Yi, C. Yao, M.X. Zhang, H.T. Wang, S. Bin Li, X.B. Bai, Q.Y. Chen, G.C. Ji, Improved corrosion resistance of AZ91D magnesium alloy coated by novel cold-sprayed Zn-HA/Zn double-layer coatings, Ceram. Int. 46 (2020) 7687–7693. https://doi.org/10.1016/j.ceramint.2019.11.271.

H. Wu, L. Zhang, C. Liu, Y. Mai, Y. Zhang, X. Jie, Deposition of Zn-G/Al composite coating with excellent cathodic protection on low-carbon steel by low-pressure cold spraying, J. Alloys Compd. 821 (2020) 153483. https://doi.org/10.1016/j.jallcom.2019.153483.

B.C. White, W.A. Story, L.N. Brewer, J.B. Jordon, Fracture mechanics methods for evaluating the adhesion of cold spray deposits, Eng. Fract. Mech. 205 (2019) 57–69. https://doi.org/10.1016/j.engfracmech.2018.11.009.

S. Singh, H. Singh, S. Chaudhary, R.K. Buddu, Effect of substrate surface roughness on properties of cold-sprayed copper coatings on SS316L steel, Surf. Coatings Technol. 389 (2020) 125619. https://doi.org/10.1016/j.surfcoat.2020.125619.

M. Amiriafshar, M. Rafieazad, X. Duan, A. Nasiri, Fabrication and Coating Adhesion Study of Superhydrophobic Stainless Steel Surfaces: the Effect of Substrate Surface Roughness, Surfaces and Interfaces. 20 (2020) 100526. https://doi.org/10.1016/j.surfin.2020.100526.

J. Morales Torres, J.J. Olaya Flores, H.F. Rojas Molano, Una aproximación a la tecnología de proyección térmica, Av. Investig. En Ing. 9 (2012) 60–71.

Published
2020-10-05
How to Cite
Agredo-Diaz, D. G., Ortiz-Godoy, N., Barba-Pingarrón, A., González-Parra, J. R., Valdez-Navarro, R. G., & Olaya-Florez, J. J. (2020). Effect of the roughness of the substrate on the properties of Zn-Al coatings deposited by thermal spraying on ductile iron, additive manufacturing steel and ABS. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 7(7), 33-39. https://doi.org/10.29057/aactm.v7i7.6192