Mineralogy and geochemistry of a dioritic intrusive rock in central Mexico

Keywords: Diorite, Mineralogy, Geochemistry, Mexico center

Abstract

 In the center of Mexico (Hidalgo state), a horseshoe-shaped structure named Panales is located, 7 km in diameter, which exhibits in its center a small intrusive (Cerro Siete Minas of 0.5 km2 outcrop), whose age it has been considered as of the lower Tertiary. The mineralogical and geochemical characterization of the intrusive shows that it is an augite-enstatite diorite, with a moderate composition of potassium and sodium, metalluminous ((A / CNK = 0.95) and chalcoalkaline. The geobarometric and microthermometric data of clinopyroxene and plagioclase suggest that the depth of formation of this intrusive was between 11-12.5 km (3.3-3.8 kbars), and 900-800 ° C, later re-equilibrated temperature values indicate 500-600 ° C. It is suggested that the intrusive may represent part of the plutonic root of a collapsing volcanic structure emplaced in this sector of the Trans-Mexican Volcanic Belt.

Downloads

Download data is not yet available.

References

Anguita, F., Verma, S.P., Márquez, A., Vasconcelos-F., M., López, I., Laurrieta, A., (2001). Circular features in the Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research 107, 265-274.

Armienti, P., Perinelli, C., Putirka, K.D., (2013). A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy). Journal of Petrology 54, 4, 795-813. DOI:10.1093/petrology/egs085.

Barker, F., (1979). Trondhjemite: definition, environment and hypothesis of origine. In: Barker, F., (ed), Trondhjemites, Dacites, and Related Rocks. Elsevier, Amsterdam, pp. 1-12.

Barrera-Guerrero, S., (2009). Caracterización geológica de la estructura semicircular Panales, Ixmiquilpan, estado de Hidalgo, México. Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, tesis de Licenciatura en Ingeniería en Geología Ambiental, 191 p., (inédita).

Carrasco, V.B., (1971). Litofacies de la Formación El Abra en la plataforma de Actopan, Hidalgo., México. Revista del Instituto Mexicano del Petróleo, 3, 1, 5-28.

Carrillo-Martínez, M., Suter, M., (1982). Tectónica de los alrededores de Zimapán, Hidalgo y Querétaro. In: Excursion geológica a la región de Zimapán y áreas circundantes. Libro-guía IV Convención Nacional. Sociedad Geológica Mexicana. México, D.F. pp. 1-20.

Chappel, B.W, White, A.J.R., (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48, 489-499.

Consejo de Recursos Minerales, (1995), Carta geológico-minera Ixmiquilpan (F14-C79), escala 1:50 000.

Elkins, L.T., Grove, T.L., (1990), Ternary feldspar experiment and thermodynamic models. American Mineralogist, v. 75, p. 544-559.

Flores-Castro, K., Vaquer-Navarro, R., Ortiz-Hernández, L.E., Esquivel-Macías C., Ramírez-Cardona, M., Acevedo-Sandoval, O., Canet-Miquel, Ch.,( 2003). Petrologic and geochemical constraints from La Encarnacion granitoids, Hidalgo state (Mexico). 99th Annual Meeting Cordilleran Section, Geological Society of America Abstracts with Programs, April 1-3, 2003, Puerto Vallarta, Jalisco, Session No. 10-6, p. 19 (abstract).

Frost, B.R., Barnes, C., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., (2001). A geochemical classification for granitic rocks. Journal of Petrology 43, 2033-2048.

González-Caver, E. L., Jaimes-Martínez, L. M., (1986). Modelo metalotectónico de la mineralización de tungsteno del skarn de plomo-zinc de Zimapán, Hgo., en base a datos isotópicos de Rb, Sr, y O. Universidad Nacional Autónoma de México, Facultad de Ingeniería, México, D.F., tesis de Licenciatura en Ingeniería Geológica, 52 p. (inédita).

Hollocher, K., (2004). CIPW Norm Calculation Program. Geology Department, Union College.

Jagoutz, O. , (2010). Construction of the granitoid crust of an island arc part II: a quantitative petrogenetic model. Contributions to Mineralogy and Petrology 16, 359–381.

JICA-MMAJ, (1980). Report on the Geological Survey of the Pachuca-Zimapán area, central Mexico. Phase II.

Jung, S., Pfänder, J.A., (2007). Source composition and melting temperatures of orogenic granitoids-constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy 19, 6, 859-870. DOI: 10.1127/0935-1221/2007/0019-1774.

Kikoyawa, M. ed., (1981). Report on geological survey of the Pachuca-Zimapán area, central Mexico; phase II. Consejo de Recursos Minerales México, Metal Mining Agency of Japan y Japan International Cooperation Agency, pp.195 (inédito).

Le Bas, M.J., (1962). The role of aluminium in igneous clinopyroxenes with relation to their parentage. American Journal of Science 260, 267-288.

McCulloch MT, Gamble J.A., (1991). Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science and Letters 102, 3–4, 358–374.

LePage, L.D., (2003). ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computers and Geosciences 29, 673-678.

Lindsley, D.H., (1983). Pyroxene thermometry: American Mineralogist 68, 5-6, 477-493.

Maniar, P.D., Piccoli, P.M., (1989). Tectonic discrimination of granitoid. Geological Society of America Bulletin 101, 635-643.

Massota, M., Mollo, S., Freda, C., Gaeta, M., Moore, G., (2013). Clinopyroxene-liquid thermometers and barometers specific to alkaline differenciated magmas. Contributions to Mineralogy and Petrology, DOI 10.1007/s00410-013-0927-9.

Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zuzzman, J.; Aoki, K. , Gottardi, G. , (1988). Nomenclature of pyroxenes. American Mineralogist 7, 1123-1133.

Pearce, J.A., Harris, N.B.W., Tindle, A.G., (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, Journal of Petrology 125, 956-983.

Proteau, G. Scaillet, B., Pichavant, M., Mauty, R., (2001). Evidence for mantle metasomatism by hydrous silica melts derived from subducted oceanic crust. Nature 410, 197-200.

Reyes-Moreno, J.A., Pérez-Corona, F.Y., Árcega-Santillán, I., Ortiz-Hernández, L.E., (2019). Combinación de métodos potenciales y percepción remota para el análisis geológico-estructural de la caldera Panales, Hidalgo, México. Tópicos de Investigación en Ciencias de la Tierra y Materiales 6, ICBI, UAEH, ISSN: 2395-840, pp. 123-129.

Rudnik, R.L., Fountain, D.M, (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics 33, 3, 267-309, Paper number 95RG01302.

Rudnick, R.L., Gao, S., (2003). Composition of the continental crust. In Treatise on Geochemistry, 3, ISBN 0-08-043751-6, Elsevier, Amsterdam, pp.1-64.

Simons F.S., Mapes V.E., (1956). Geology and mineral deposits of the Zimapan district, State of Hidalgo. Boletín del Instituto Nacional de Investigaciones sobre os Recursos Minerales 40, pp. 282.

Sun, S.S., McDonough W.F., (1989). Chemical and isotopic systematic of oceanic basats: Implications for mantle composition and processes. In Saunders A.D., Norry M.J. (eds.), Magmatism in the ocean basins, Geological Society Special Publication 42, 313-345.

Suter, M., Carrillo-Martínez,M., López-Martínez, M., , Farrar, E., (1995). The Aljibes half-graben active extensión at the boundary between the trans-Mexican volcanic belt and the basin and range province, México. Geological Society of America Bulletin 107, 6, 627-641.

Suter, M., López-Martínez, M., Quintero-Legorreta, O. y Carrillo-Martínez, M., (2001). Quaternary intra-arc extensión in the central Trans-Mexican volcanic belt. Geological Society of America Bulletin 113, 693-703.

Whalen, J.B, Hildebrand, R.S., (2019). Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 348-349, 105179. DOI: 10.1016/j.lithos.2019.105179.

Published
2021-10-05
How to Cite
Escamilla Casas, J. C., & Ortiz Hernández , L. E. (2021). Mineralogy and geochemistry of a dioritic intrusive rock in central Mexico. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 8(8), 47-53. https://doi.org/10.29057/aactm.v8i8.7505