Behavior of the collectorless flotation of pyrargyrite

Keywords: Collectorless flotation, pyrargyrite, activation, hydrophilic, FTIR

Abstract

Pyrargyrite Ag3SbS3 is a sulfosal-type mineral rich in silver present in the deposits of Cu, Pb and Zn sulfides, which is not recovered individually and floats together with the sulfides, the silver of this mineral is eliminated in the slag during fusion. For this reason, this work studies the collectorless flotation of pyrargyrite to provide information for the selective separation of this mineral. The results found show that the flotation of pyrargyrite can be carried out without a collector only using 60 mg / L frother agent. The pH plays an important role and greater flotation efficiency is obtained at pH 6 and 10 with around 66% w/w separation. The acid values ​​2, 2.54 and 4.97 depress the flotation of the mineral. The surface depression is attributed to the strong intensity of the absorption bands, of the sulfate ion and hydroxyl OH- giving a hydrophilic character to the surface. While the surface activation is attributed to the oxidation of the metallic components forming bonds Sb-O and Ag-O species determined by infrared.

Downloads

Download data is not yet available.

References

Fairthorne G., Fornasiero D. & Ralston J. (1997). Effect of oxidation on the collectorless flotation of chalcopyrite. International Journal of Mineral Processing. 49 (1-2). 31-48.

Fornasiero D. & Ralston J. (2006). Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite. Int. J. Miner. Process. 78. 231– 237.

František Laufek, Jiří Sejkora, Michal Dušek. (2010). The role of silver in the crystal structure of pyrargyrite: single crystal X-ray diffraction study. Journal of Geosciences, 55, 161–167.

García M. E., Querol S. F. & Lowther G. K. (1991). Geology of the Fresnillo mining district, Zacatecas. In `Economic Geology, Mexico' (Salas, G. P. editor), GSA DNAG volume P-3, 438pp., 383-394.

Hayes R. A. & J. Ralston. (1988). The collectorless flotation and separation of sulphide minerals by Eh control. International Journal of Mineral Processing. 23 (1). 55-84.

Luttrell G. & Yoon R. (1984). Surface studies of the collectorless flotation of chalcopyrite. Colloids and surfaces. 12. 239-254.

Reyes Pérez M. (2013). Modificación superficial de mineral de pirita y precipitados de Hierro: comportamiento en medios acuosos y de molienda. Tesis doctoral. Morelia Michoacán México.

Wills, B. A., & Finch, J. A. (2016). Froth Flotation. Wills’ Mineral Processing Technology. Oxford UK. 8 Ed. pp 280-380.

Yekeler M. (1997). Effect of the hydrophobic fraction and particle size in the collectorless column flotation kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 121 (1). 9-13

Published
2021-10-05
How to Cite
Reyes, M., Barrientos Hernández, F. R., Pérez Labra , M., Juárez Tapia , J. C., Reyes Domínguez, I. A., & Flores Guerrero , M. U. (2021). Behavior of the collectorless flotation of pyrargyrite. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 8(8), 10-15. https://doi.org/10.29057/aactm.v8i8.7591