Effect of pH on the selectivity and coagulation of humic acids in the presence of Al3+ by zeta potential

Keywords: Humic-acid, metal, interaction, coagulation, zeta potential.

Abstract

In this research, the effect of pH (5 and 7) on the coagulation of humic acids (HAs) in presence of a coagulating agent such as aluminum (Al3 +) was evaluated.

Physicochemical analysis of studied HAs (commercial HA-CH and extracted in the laboratory HA-A and HA-T) showed polyacid and stable characteristics, which is corroborated with its ability to coagulate with the trivalent metal through zeta potential values. It was shown that there is a rapid interaction of HAs-Al in less than 5 min and especially when increasing the concentration of the metal (1, 2 and 3 mM) at a pH of 5, due to the deprotonation of carboxylic groups (-COOH) principally, that can coordinate under these conditions, reducing the net negative charge and enabling such complexes to approach one another and interact through hydrogen bonding.

Downloads

Download data is not yet available.

References

Aguilera, H. M., (1989). Tratado de edafología de México. 1ª Ed. México, D.F.: Facultad de Ciencias.

Almendros, G. (2008). Revisión analítica de sustancias húmicas en suelos y compost. soilACE 239-255. Recuperado el 2 de mayo de 2018 de: https://www.soilace.com/pdf/pon2008/d26/Cas/04_GAlmendros.pdf.

Carpio, D. K. (2017). Análisis fisicoquímico de ácidos húmicos y evaluación cinética de su agregación con iones Na+, Ca2+ y Mg2+. Tesis de Licenciatura, Universidad Autónoma del Estado de Hidalgo, México.

Chan, M. N., Chan, C. K. (2003). Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance. Environ. Sci. Technol 37(22), 5109-5115.

Chin, Y. P., Alken, G., Loughlin, E. O. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol 28, 1853 – 1858.

Diallo, M. S., Simpson, A., Gassman, P., Jonson, J. H., Goddard, W. A. (2003). 5.D. Structural modeling of humic acids through experimental characterization, computer assidted structure elucidation and atomistic simulations. 1. Chelsea soil humic acid. Environ. Sci. Technol 37, 1783-1793.

He, Z., Traina, S. J., Weavers, L. (2007). Sonolytic desorption of mercury from aluminum oxide: effects of pH, chloride and organic matter. Environ. Sci. Technol 41, 779-784.

Kloster, N., Brigante, M., Zanini, G., Avena, M., (2013). Aggregation kinetics of humic acids in the presence of calcium ions. Colloids and Surfaces A: Physicochem. Eng. Aspects 427, 76 - 82.

Kononova, M. M. (1982). Materia Orgánica del Suelo. 1ª Ed. Oikos-tau, Barcelona, España, 63-105.

Kucerík, J., Kovár, J., Pekar, M. (2004). Thermoanalytical investigation of lignite humic acids fractions. J. of Termal Análisis and Calorimetry 76, 6242-6252.

Lead, J. R., Starchev, K., Wilkinson, K. J. (2003). Diffusion Coefficients of Humic Substances in Agarose Gel and in Water. Environ. Sci.Technol 37(3), 482-487.

Leggett, D. J., McBryde, W. A. E. (1975). General computer program for the computation of stability constants from absorbance data. Analytical Chemistry 47(7), 1065-1070.

Licona, S. T. J. (2007). Extracción y Análisis Fisicoquímico de Ácidos Húmicos y su Interacción con Cu(II) y Pb(II). Tesis de Licenciatura, Universidad Autónoma del Estado de Hidalgo, México.

Ma, J., Guo, H., Weng, L., Li, Y., Lei, M., Chen, Y., (2018). Distinct effect of humic acid on ferrihydrite colloid-facilitated transport of arsenic in saturated media at different pH. Chemosphere 212, 794-801.

Mosquera, C., Bravo, I., Hansen, E. (2007). Comportamiento estructural de los ácidos húmicos obtenidos de un suelo Andisol del Departamento del Cauca. Revista Colombiana de Química 36(1), 31-41.

Nieto, V. S. (2010). Estabilidad de los ácidos húmicos y su influencia en la interacción con Cu(II) y Pb(II). Tesis de Doctorado, Universidad Autónoma del Estado de Hidalgo, México.

Nieto, V. S. (2017). Evaluación del Efecto de las Cinéticas de Agregación de los Ácidos Húmicos (AHs) en Presencia de Na+, Ca2+ y Mg2+. Revista Tendencias en Docencia e Investigación en Química 3, 154 – 162.

Novák, J., Kozler, J., Janos, P., Ceziková, J., Tokarová, V. & Madronová, L. (2001). Humic acid from coals of the North-Bohemian Coal Filed I.Preparation and characterization. React. Funct. Polym. 47:101-109.

Pacheco, M. L. (2002). Capillary Electrophoresis and MALDI-TOF Mass Spectrometry of Humic Acids. Tesis de Doctorado, Departamento de Química Analítica, Facultad de Ciencias, Universidad de Masaryk, República Checa.

Plaza, C., Brunetti, G., Senesi, N., Polo, A., (2006). Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy. Environ. Sci. Technol 40(3), 917 - 923.

Rodríguez, W., García, P. A., Fajardo, A. (2016). Aplicaciones de técnicas espectroscópicas para el análisis de suelos. Universidad Militar Nueva Granada 12(2), 228-251.

Schnitzer, M. (1991). Soil Organic Matter. Soil Sci. 151, 41 – 58.

Schulten, H. R., Hempfling, R. (1992). Influence of agricultural and management on humus compositon and dynamics: Classical and modern analytical techniques. Plant Soil 142, 259 – 271.

Shunan, D., Wangwei, C., Jihong, X., Liting, S., Weimu, W., Hui, L. (2021). Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid. Environmental Pollution 268.

Stevenson, F. J., (1994). Humus Chemistry. Genesis, Composition and Reactions. 2nd Ed. Willey Interscience, New York, NY.

Tipping, E. (2002). Cation binding by humic substances. West Nyack, N.Y. USA: Cambridge University Press. 2002.

Watson, M. A., Tubi´c, A., Agbaba, J., Niki´c, J., Maleti´c, S., Molnar, Jazi´c, J., Dalmacija, B., (2016). Response surface methodology investigation into the interactions between arsenic and humic acid in water during the coagulation process. J. Hazardous Materials 312, 150 -158.

Published
2021-10-05
How to Cite
Villagrán Manilla, A., Ibarra Coria, E. D., Guevara Lara, A., & Nieto, S. (2021). Effect of pH on the selectivity and coagulation of humic acids in the presence of Al3+ by zeta potential. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 8(8), 54-59. https://doi.org/10.29057/aactm.v8i8.7643