Structural characterization of heat treated electroless Ni-P-Al2O3 coatings

Keywords: Composite electroless nickel coatings, Heat Treatment, Precipitation Hardening, X Ray Diffraction, Microhardness

Abstract

This paper presents the results from the study of the microstructural changes that occur in composite electroless nickel coatings on aluminium, without particles and with the addition of aluminum oxide particles, as they are deposited and after the application of heat treatment at 300°C and 400°C for one hour. The characterization of the coatings obtained was carried out by means of  scanning electron microscopy, interferometric microscopy, microhardness, microanalysis and X-ray diffraction. After the heat treatment applied, the coatings undergo a structural change that takes them from an initial amorphous condition to a crystalline condition, accompanied by a precipitation hardening process that causes an increase in the microhardness of the coatings. It is also observed that the presence of aluminium oxide particles, in the proportion used, has no relevant effect on the structural transformations of the deposits, compared to the coating without particles

Downloads

Download data is not yet available.

References

Agarwala R. C. Agarwala V. (2003). Electroless alloy/composite coatings: A review. S ̄adhan ̄a 28: 3-4. 475–493.

Alirezaei, S., S. M. Monirvaghefi, M. Salehi, and A. Saatchi. (2004). “Effect of Alumina Content on Surface Morphology and Hardness of Ni–P–Al2O3(α) Electroless Composite Coatings.” Surface and Coatings Technology 184:2 170–175.

Alirezaei, S., S. M. Monirvaghefi, M. Salehi, and A. Saatchi. (2007). “Wear Behavior of Ni-P and Ni-P-Al2 O3 Electroless Coatings.” Wear 262 (7–8): 978–985. doi:10.1016/j.wear.2006.10.013

Arima K., T., Tokunaga, Y., Tokura, Y., & Taguchi, Y. (2020). Stability of multiferroic phase and magnetization-polarization coupling in Y-type hexaferrite crystals. Physical Review B, 101(7), 1–17.

ASTM B487-20. Standard Test Method for Measurement of Metal and Oxide Coating Thickness by Microscopical Examination of Cross Section.

ASTMB578-2021. Standard Test Method for Microhardness of Electroplated Coatings

Balaraju, J. N., T. S. N. Sankara Narayanan, and S. K. Seshadri. (2006). “Structure and Phase Transformation Behaviour of Electroless Ni–P Composite Coatings.” Materials Research Bulletin 41 (4): 847–860. doi:10.1016/j.materresbull.2005.

Barba P. A. et. al. (2021). Niquelado químico. Capitulo en: Texto Iberoamericano de Ingeniería de Superficies. r: Universidad Nacional Autónoma de México, Facultad de Ingeniería,

Biswas A,Das S.K, Sahoo P. (2016) Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings. IOP Conference Series: Materials Science and Engineering, 149, 1, 012045. DOI: 10.1088/1757-899X/149/1/012045

Bolarín-Miró A.M, Prieto-García F. Méndez M.A, Sánchez-de Jesús, F. (2005). Efecto del sistema de agitación sobre la codepositación de alúmina en recubrimientos de niquelado químico compuesto. Superficies y vacío 18:1. 38-46.

Fukuda S. Shimada K. Izu N., Miyazaki H. Iwakiri S. Hirao (2018). K. Effects of phosphorus content on generation and growth of cracks in nickel–phosphorus platings owing to thermal cycling. Journal of Materials Science: Materials in Electronics 29:11688–11698. doi: 10.1007/s10854-018-9267-X

González R., Agredo G., Barba A. et al. (2019). Efecto del niquelado químico en la resistencia a la corrosión de piezas de acero fabricadas por Manufactura Aditiva. Memorias del IX Congreso Internacional de Ingeniería Mecánica, Mecatrónica y Automatización. Bogotá, Colombia.

Guo Z., Keong K. G., Sha W. (2003). Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating. Journal of Alloys and Compounds 358. 112–119.

Hu et al.(2018). Deposition Process and Properties of Electroless Ni-P-Al2O3 Composite Coatings on Magnesium Alloy. Nanoscale Research Letters 13:198. https://doi.org/10.1186/s11671-018-2608-0.

Vargas L, Barba A., Bolarín A.M, Sánchez F. (2006). Age Hardening of Ni-P-Mo electroless deposit”. Surface Engineering 22:1, 58-62. https://doi.org/10.1179/174329406X84976.

Keong K. G., Sha W., Malinov S. (2003). Hardness evolution of electroless nickel–phosphorus deposits with thermal processing. Surface and Coatings Technology 168. 263–274.

León-Patiño, C. A., García-Guerra J, Aguilar-Reyes E. A.. (2019). “Tribological Characterization of Heat-Treated Ni–P and Ni–P–Al2O3 Composite Coatings by Reciprocating Sliding Tests.” Wear 426–427: 330–340.

Pacheco D., León O., Liscano S., Gil I. (2008). Influencia de la temperatura de tratamiento térmico sobre la velocidad de corrosión de recubrimientos autocatalícos Ni-P. Universidad, Ciencia y Tecnología, 12(47), 65-72.

Palaniappa M., Seshadri S. K.(2007). Structural and phase transformation behaviour of electroless Ni–P and Ni–W–P deposits. Materials Science and Engineering A 460–461 638–644.

Sarret M., C. Müller, A. Amell.(2006). Electroless NiP micro and nano composite coatings. Surface and Coatings Technology 201 389–395.

Sudagar J. Muraliraja R, Tamilarasan T.R.,Udayakumar S., Selvakumar A.. (2019). Electroless Composite Coatings. Capítulo en: Electroless Nickel Plating. 359-409. CRC Press DOI: 10.1201/9780429466274

Published
2022-10-05
How to Cite
Barba Pingarron, A., Covelo Villar, A., Hernández Gallegos, M. Ángel, Agredo Díaz, G., Valdéz Navarro, R., & González Parra, R. (2022). Structural characterization of heat treated electroless Ni-P-Al2O3 coatings. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 9(9), 59-64. https://doi.org/10.29057/aactm.v9i9.9384