Synthesis of CuO nanostructures using X-type zeolite as support

Keywords: Zeolite, CuO nanoparticles, ionic exchange

Abstract

Nowadays, the creation of metallic nanoparticles (NPs) has made possible the use of new technologies, since they have unique properties that differ from those obtained at the macroscale. On the other hand, zeolites are porous aluminosilicate materials that have gained popularity because they have an internal structure that allows cation exchange processes, giving them a wide field of application. In this work, the exchange process of zeolite X with copper and the synthesis of CuO NPs located on the zeolite surface structure were investigated using the NaOH coprecipitation method. The exchange process was studied by plasma spectroscopy (ICP-OES) and the product obtained from the synthesis process was characterized by X-ray diffraction (XRD).

Downloads

Download data is not yet available.

References

A. Goswami, P.K. Raul, M.K. Purkait, Chem. Eng. Res. Des. 90 (2012) 1387-1396.

Abramovaa, A.; Gedankenb, A.; Popov, V.; Ooi, E.; Masond, T. J.; Joyce, E. M. A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for its implementation. Mater. Lett. 2013, 96, 121–124. DOI: http://dx.doi.org/10.1016/j.matlet.2013.01.041.

Åizajé Sm YmA Zotfipouré wmA üarzegaruXalalié YmA Zarrintané Ym 7mA Kdibkiaé –m Kntimicrobial activity of the metals and metal oxide nanoparticlesm MaterO SciO EngON CO 2014é 44é OPCuOCEm Åáq° http°BBdxmdoimorgByímyíyhBjmmsecmOíyEmíCmíFym

Alswat, A. A., Ahmad, M. B., Hussein, M. Z., Ibrahim, N. A., & Saleh, T. A. (2017). Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. Journal of Materials Science & Technology, 33(8), 889–896. https://doi.org/10.1016/j.jmst.2017.03.015

Brandani, S. (2020). Kinetics of liquid phase batch adsorption experiments. Adsorption, 27(3), 353–368. https://doi.org/10.1007/s10450-02000258-9

Cruz, Z., & Gamed, G. (2008). Una visión universitaria: el ph, sustento en el equilibrio químico para la vida celular. CienciaUAT, 2(4), 62–66. https://www.redalyc.org/pdf/4419/441942912004.pdf

El-Nahhal, I.; Zourab, S.; Kodeh, F.; Selmane, M.; Genois, I.; Babonneau, F. Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications. Int. Nano Lett. 2012, 2(14), 1-5. DOI:http://dx.doi.org/10.1186/2228-5326-2-14.

G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Int. J. Antimicrob. Agents, 33 (2009) 587-590.d

Gómez Villarraga, F. (n.d.). Nanopartículas metálicas y sus aplicaciones.

J. Liu, J. Jin, Z. Deng, S.Z. Huang, Z.Y. Hu, L. Wang, J. Colloid Interface Sci. 384 (2012) 1- 9.

K.J. Choi, H.W. Jang, Sensors (Basel, Switzerland) 10 (2010) 4083-4099.

L. Esmeralda Román, Castro, F., Maúrtua, D., Condori, C., Vivas, D., Bianchi, A. E., Francisco Paraguay Delgado, Solis, J. L., & Gómez, M. M. (2017). Nanopartículas de CuO y su propiedad antimicrobiana en cepas intrahospitalarias. Revista Colombiana de Química, 46(3), 28–36. https://www.redalyc.org/journal/3090/309052302005/html/#:~:text=La%20caracterizaci%C3%B3n%20de%20las%20NPs%20de%20CuO%20demostr%C3%B3%20que%20cuando,t%C3%A9cnico%20de%20la%20sal%20precursora.

L.P. Zhou, B.X. Wang, X.F. Peng, X.Z. Du, Y.P. Yang, Adv. Mech. Eng. 2 (2010) 1652- 1660.

Luis, J., Alfonso, D., Luis, J., Govea, P., Iván Tobón, Jorge, Álvarez Gutiérrez, Yennifer, Andrés, L., Vattuone, M. E., Gargiulo, M. F., Crosta, S., Leal, R., Lam, R., Baltar, M., Adão, L., Enrique, F.,

Novo Fernández, Rosa, Carrasco Olguín, Rodrigo, & Cubillos, G. (2018). Las zeolitas naturales de Iberoamérica - Archivo Digital UPM. Oa.upm.es. https://doi.org/https://oa.upm.es/50683/

M. Ahamed, H.A. Alhadlaq, M.A.M. Khan, P. Karuppiah, N.A. Al-Dhabi, J. Nanomater. (2014) 1-4.

M.M. Rahman, J.S. Ahammad, J.H. Jin, S.J. Ahn, J.J. Lee, Sensors (Basel, Switzerland) 10 (2010) 4855–4886.

MedMasksLLC - Antimicrobial Protection that is Committed to Preserving Health.(2020).Medmasksllc. http://medmasksllc.com/products_antimicrobial.php

Morales-García, P., Cardoso-Legorreta, E., Samaniego-Benítez, J. E., Legorreta-García, F., & Perez-Labra, M. (2021). Caracterización fisicoquímica mediante DRX y MEB-EDS de la zeolita comercial 13X-HP. PÄDI boletín científico de ciencias básicas e ingenierías del ICBI, 9(Especial2), 57–61. https://doi.org/10.29057/icbi.v9iespecial2.8026

Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater Sci. 60 (2014) 208-337.

S.B.B. Wang, C.H.H. Hsiao, S.J.J. Chang, K.T.T. Lam, K.H.H. Wen, S.C.C. Hung, Sens. Actuators A 171 (2011) 207-211.

T.A. Saleh, Appl. Surf. Sci. 257 (2011) 7746-7751.

T.A. Saleh, Environ. Sci. Pollut. Res. 22 (2015) 16721-16731.

Verboeken, D., Nuttens, N., Locus, R., Van Aelst, J., Verolme, P., Groen, J. C., Pérez-Ramírez, J., & Sels, B. F. (2016). Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. Chemical Society Reviews, 45(12), 3331–3352. https://doi.org/10.1039/c5cs00520e

X. Xu, Q. Ni, Catal. Commun. 11 (2010) 359-363.

Y. Wang, F. Yang, H.X. Zhang, X.Y. Zi, X.H. Pan, F. Chen, W.D. Luo, J.X. Li, H.Y. Zhu, Y.P. Hu, Cell Death Dis. 4 (2013) e783.

Yousef, R. I., El-Eswed, B., & Al-Muhtaseb, A. H. (2011). Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chemical Engineering Journal, 171(3), 1143–1149. https://doi.org/10.1016/j.cej.2011.05.012

Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16 (2005) 88–92.

Published
2022-10-05
How to Cite
Pérez González, N. K., Rodríguez García, M. G., Legorreta García, F., Díaz Guzmán, D., Chávez Urbiola, E. A., & Vargas Ramírez, M. (2022). Synthesis of CuO nanostructures using X-type zeolite as support. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 9(9), 30-34. https://doi.org/10.29057/aactm.v9i9.9428