Degradation of methylene blue by photolysis: effect of process variables

Keywords: Photolysis, Methylene blue, Remediation

Abstract

In the present work it is reported how the different process variables affect the photolysis of Methylene Blue (MB), without the use of other agents, evaluating the source of radiation, the agitation speed, the pH and the temperature. The results obtained for pH 3 -7.28%, pH 7 16.95% and at pH 11 76.09%, these results are attributed to the hydroxyl group (OH) present in the solution. Similarly, a great dependence of photolysis is observed depending on the source of radiation and its power, obtaining as a result 62.30%, 18.65% and 8.84% for solar radiation, LED lamp and Xenon lamp, respectively. On the other hand, the increase in temperature does not show to be determinant, finding a maximum of - 8.74% when the solution is heated to 46°C and, finally, it was found that changes in agitation produce changes in the adsorption values, finding for 100 rpm 57.64%, 500 rpm 62.30% and 900 rpm 59.91%.

Downloads

Download data is not yet available.

References

Acosta-Esparza, M.A.; Rivera, L.P.; Pérez-Centeno, A.; Zamudio-Ojeda, A.; González, D.R.; Chávez-Chávez, A.; Santana-Aranda, M.A.; Santos-Cruz, J.; Quiñones-Galván, J.G. (2020) UV and Visible light photodegradation of methylene blue with graphene decorated titanium dioxide. Mater. Res. Express, 7, 035504. Doi: 10.1088/2053-1591/ab7ac5

Abd-Elhamid A.I., Emran M., El-Sadek M.H., El-Shanshory A.A., Soliman H.M.A., Akl M.A., Rashad M. (2020) Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Appl. Water Sci, 10, 45. Doi:10.1007/s13201-019-1128-0

Albayati T.M., Sabri A.A., Alazawi R.A. (2016) Separation of Methylene Blue as Pollutant of Water by SBA-15 in a Fixed-Bed Column. Arab. J. Sci. Eng. 41, 2409–2415. Doi: 10.1007/s13369-015-1867-7

Amode J.O., Santos J.H., Md Alam Z., Mirza A.H., Mei C.C. (2016) Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: Equilibrium and kinetics studies. Int. J. Ind. Chem, 7, 333–345. Doi: 10.1007/s40090-016-0085-9

Anushree C., Philip J. (2019) Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids Surf. A Physicochem. Eng. Asp. 567, 193–204. Doi: 10.1016/j.colsurfa.2019.01.057

Bouras H.D., Isik Z, Arikan E.B., Yeddou A.R., Bouras N., Chergui A., Favier L., Amrane A., Dizge N. (2020). Biosorption characteristics of methylene blue dye by two fungal biomasses. Int. J. Environ. Stud. 78, 365–381. Doi:10.1080/00207233.2020.1745573

Choquehuanca, A.; Ruiz-Montoya, J.G.; Gómez, A.L.R.-T. (2021) Discoloration of methylene blue at neutral pH by heterogeneous photo-Fenton-like reactions using crystalline and amorphous iron oxides. Open Chem., 19, 1009–1020. Doi: 10.1515/chem-2021-0077

Guergueb, M.; Nasri, S.; Brahmi, J.; Loiseau, F.; Molton, F.; Roisnel, T.; Guerineau, V.; Turowska-Tyrk, I.; Aouadi, K.; Nasri, H. (2020) Effect of the coordination of π-acceptor 4-cyanopyridine ligand on the structural and electronic properties of: Meso-tetra(para-methoxy) and meso-tetra(para-chlorophenyl) porphyrin cobalt(ii) coordination compounds. Application in the catalytic degradation of methylene blue dye. RSC Adv., 10, 6900–6918. Doi: 10.1039/C9RA08504A

Jawad, N.H.; Najim, S.T. (2018) Removal of Methylene Blue by Direct Electrochemical Oxidation Method Using a Graphite Anode. IOP Conf. Ser. Mater. Sci. Eng., 454, 012023. Doi: 10.1088/1757-899X/454/1/012023

Kazemi F., Mohamadnia Z., Kaboudin B., Karimi Z. (2016) Photodegradation of methylene blue with a titanium dioxide/polyacrylamide photocatalyst under sunlight. J. Appl. Polym. Sci, 133, 43386. Doi: 10.1002/app.43386

Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. (2020) Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng., 8, 104364. Doi: 10.1016/j.jece.2020.104364

Mahmoud M.S., Farah J.Y., Farrag T.E. (2013) Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes. Egypt. J. Pet, 22, 211–216. Doi: 10.1016/j.ejpe.2012.09.013 Mohammed, H.A.; Khaleefa, S.A.; Basheer, M.I. (2021) Photolysis of Methylene Blue Dye Using an Advanced Oxidation Process (Ultraviolet Light and Hydrogen Peroxide). J. Eng. Sustain. Dev., 25, 59–67. Doi: 10.31272/jeasd.25.1.5

Pham V.L., Kim D.-G., Ko S.-O. (2020) Mechanisms of Methylene Blue Degradation by Nano-Sized β-MnO2 Particles. KSCE J. Civ. Eng, 24, 1976–3808. Doi: 10.1007/s12205-020-2036-4

Sahu S., Pahi S., Sahu J.K., Sahu U.K., Patel R.K. (2020) Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon—an efficient bioadsorbent for methylene blue dye: Equilibrium, kinetic, and thermodynamic study. Environ. Sci. Pollut. Res., 27, 22579–22592. Doi: 10.1007/s11356-020-08561-2

Salimi A., Roosta A. (2019) Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochim., 675, 134–139. Doi: 10.1016/j.tca.2019.03.024

Soltani T., Entezari M.H., (2013) Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. Journal of Molecular Catalysis A: Chemical 377, 197–203. Doi: 10.1016/j.molcata.2013.05.004

Sousa H.R., Silva L.S., Sousa P.A.A., Sousa R.R.M., Fonseca M.G.; Osajima J.A., Silva-Filho E.C. (2019) Evaluation of methylene blue removal by plasma activated palygorskites. J. Mater. Res. Technol, 8, 5432–5442. Doi: 10.1016/j.jmrt.2019.09.011

Wei X., Wang Y., Feng Y., Xie X., Li X., Yang S. (2019) Different adsorption-degradation behavior of methylene blue and Congo red in nanoceria/H2O2 system under alkaline conditions. Sci. Rep. 9, 4964. Doi: 10.1038/s41598-018-36794-2

Wijaya R., Andersan G., Permatasari Santoso S., Irawaty W. (2020) Green Reduction of Graphene Oxide using Kaffir Lime Peel Extract (Citrus hystrix) and Its Application as Adsorbent for Methylene Blue. Sci. Rep, 10, 667. Doi: 10.1038/s41598-020-57433-9

Xie X., Chen L., Pan X, Wang S. (2015). Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue análisis. Journal of Chromatography A. 1405, 32-39. Doi:10.1016/j.chroma.2015.05.068

Yang C., Dong W., Cui G., Zhao Y., Shi X., Xia X., Tang B., Wang W. (2017) Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv, 7, 23699–23708. Doi: 10.1039/C7RA02423A

Zeleke, M.A.; Kuo, D.H. (2019) Synthesis and application of V2O5-CeO2 nanocomposite catalyst for enhanced degradation of methylene blue under visible light illumination. Chemosphere, 235, 935–944. Doi: 10.1016/j.chemosphere.2019.06.230

Zhang, L.C.; Jia, Z.; Lyu, F.; Liang, S.X.; Lu, J. (2019) A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci., 105, 100576. Doi: 10.1016/j.pmatsci.2019.100576

Zhang J., Zhang Y., Lei Y., Pan C. (2011) Photocatalytic and degradation mechanisms of anatase TiO2: A HRTEM study. Catal. Sci. Technol, 1, 273–278. Doi: 10.1039/C0CY00051E

Published
2023-10-05
How to Cite
Olivares Lugo, L. I., Rosales González, O., Sánchez De Jesús, F., Martínez Luévanos, A., & Bolarín Miró , A. M. (2023). Degradation of methylene blue by photolysis: effect of process variables. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 10(10), 72-76. https://doi.org/10.29057/aactm.v10i10.11226