Avances y perspectivas de la agricultura de precisión para la sostenibilidad agrícola

Palabras clave: Agricultura de precisión, Nanotecnología, Teledetección, Tecnología de Dosis

Resumen

La agricultura de precisión es una práctica agrícola que utiliza tecnologías avanzadas, como sensores remotos, sistemas de riego inteligente y nanotecnología, para optimizar la gestión de los recursos naturales y aumentar la productividad agrícola. Esta disciplina surge como respuesta a los desafíos contemporáneos de la agricultura, como el aumento de la demanda de alimentos, la escasez de recursos y los impactos ambientales. Mediante la recopilación, análisis y aplicación de grandes volúmenes de datos en tiempo real, la agricultura de precisión permite a los agricultores tomar decisiones informadas y adaptarse rápidamente a las condiciones cambiantes del entorno. Si bien la agricultura de precisión ofrece soluciones innovadoras, su pleno potencial aún no ha sido alcanzado. Es necesario continuar investigando y desarrollando nuevas tecnologías, así como mejorar la accesibilidad y la adopción por parte de los agricultores.

Descargas

La descarga de datos todavía no está disponible.

Citas

Zain, M., Ma, H., Chaudhary, S., Nuruzaman, M., Azeem, I., Mehmood, F., Aiwang D. & Sun, C. (2023). Nanotechnology in precision agriculture: Advancing towards sustainable crop production. Plant Physiol. Biochem. 2006:108244.

[USDA]. United States Department of Agriculture. (2018). World Agricultural Production. Circular Series.

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Comput. Electron. Agric. 36(2-3), 113-132.

Shahzad, A. N., Qureshi, M. K., Wakeel, A., & Misselbrook, T. (2019). Crop production in Pakistan and low nitrogen use efficiencies. Nat. Sustain. 2(12), 1106-1114.

Zain, M., Ma, H., Nuruzzaman, M., Chaudhary, S., Nadeem, M., Shakoor, N., Azeem I., Duan A., Sun Ch. & Ahamad, T. (2023). Nanotechnology based precision agriculture for alleviating biotic and abiotic stress in plants. Plant Stress, 100239.

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci, 19(1), 52-6.

Aasim, M., Katirci, R., Baloch, F. S., Mustafa, Z., Bakhsh, A., Nadeem, M. A., Ali, S.A., Hatipoglu, R., Ciftci, V., Habyarimana, E., Karaköy, T. & Chung, Y. S. (2022). Innovation in the breeding of common bean through a combined approach of in vitro regeneration and machine learning algorithms. Front. Genet. 13, 897696.

Avola, G., Distefano, M., Torrisi, A., & Riggi, E. (2024). Precision agriculture and patented innovation: State of the art and current trends. World Patent Information, 76, 102262.

Nowak, B. (2021). Precision agriculture: Where do we stand? A review of the adoption of precision agriculture technologies on field crops farms in developed countries. Agric. Res. 10(4), 515-522.

Bennur, P. J., & Taylor, R. K. (2010). Evaluating the response time of a rate controller used with a sensor-based, variable rate application system. Appl. Eng. Agric. 26(6), 1069-1075.

Dwivedi, R. S. (2017). Remote sensing of soils (Vol. 497). Berlin/Heidelberg, Germany: springer.

Ashraf, A., Ahmad, L., Ferooz, K., Ramzan, S., Ashraf, I., Khan, J. N., Shehnaz, E., Ul-Shafiq, M., Akhter S., Nabi, A., Rasool R. & Nazir, S. (2023). Remote Sensing as a Management and Monitoring Tool for Agriculture: Potential Applications. International Journal of Environment and Climate Change, 13(8), 324-343.

Zhang, Q. (2016). Precision agriculture technology for crop farming (p. 374). Taylor & Francis.

Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming—Brief review. Animals. 11(8), 2345, 1-18.

Dudhani, S., Sinha, A. K., & Inamdar, S. S. (2006). Assessment of small hydropower potential using remote sensing data for sustainable development in India. Energy policy, 34(17), 3195-3205.

Avtar, R., Kumar, P., Oono, A., Saraswat, C., Dorji, S., & Hlaing, Z. (2017). Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas. Geocarto Int. 32(8), 874-885.

Holloway, J., & Mengersen, K. (2018). Statistical machine learning methods and remote sensing for sustainable development goals: A review. Remote Sens. 10(9), 1365.

Bucci, G., Bentivoglio, D., & Finco, A. (2018). Precision agriculture as a driver for sustainable farming systems: state of art in literature and research. Calitatea, 19(S1), 114-121.

Researcheu E. Precision Farming: Sowing the Seeds of a New Agricultural Revolution. The Community Research and Development Information Service (CORDIS). Luxembourg; 2017.

Shi, J., Wu, X., Zhang, M., Wang, X., Zuo, Q., Wu, X., Zhang, H. & Ben-Gal, A. (2021). Numerically scheduling plant water deficit index-based smart irrigation to optimize crop yield and water use efficiency. Agric. Water Manag., 248, 106774.

Rodriguez-Ortega, W. M., Martinez, V., Rivero, R. M., Camara-Zapata, J. M., Mestre, T., & Garcia-Sanchez, F. (2017). Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agric. Water Manag. 183, 158-168.

Goap, A., Sharma, D., Shukla, A. K., & Krishna, C. R. (2018). An IoT based smart irrigation management system using Machine learning and open-source technologies. Comput. Electron Agri. 155, 41-49.

Rai, V., Acharya, S., & Dey, N. (2012). Implications of nanobiosensors in agriculture.

Prasad, R., Pandey, R., & Barman, I. (2016). Engineering tailored nanoparticles with microbes: quo vadis?. Wiley Interdisciplinary Reviews: Wires Nanomed. Nanobi. 8(2), 316-330.

Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use?. Plants, 10(1), 2.

Ryu, H., Thompson, D., Huang, Y., Li, B., & Lei, Y. (2020). Electrochemical sensors for nitrogen species: A review. Sensors and Actuators Reports, 2(1), 100022.

Pedersen, S. M., & Lind, K. M. (Eds.). (2017). Precision agriculture: Technology and economic perspectives (pp. 52-53). Cham, Switzerland: Springer International Publishing.

Wollenhaupt, N. C., Mulla, D. J., & Gotway Crawford, C. A. (1997). Soil sampling and interpolation techniques for mapping spatial variability of soil properties. The state of site-specific management for agriculture, 19-53.

Publicado
2024-07-05
Cómo citar
Guzmán Albores, J. M., Matuz Cruz, M. de J., Arana Llanes, J. Y., López Carrasco, E., Gómez Vázquez, V., & González Cárdenas, N. (2024). Avances y perspectivas de la agricultura de precisión para la sostenibilidad agrícola . XIKUA Boletín Científico De La Escuela Superior De Tlahuelilpan, 12(24), 1-6. https://doi.org/10.29057/xikua.v12i24.12790
Tipo de manuscrito
Artículos

Artículos más leídos del mismo autor/a

1 2 > >>