Uso de Redes Neuronales en el Análisis de Frotis de Células Sanguíneas Periféricas: una Revisión Sistemática de la Literatura

Palabras clave: Redes neuronales, análisis de frotis de células sanguíneas periféricas, reconocimiento, predicción, clasificación

Resumen

La automatización del reconocimiento y clasificación de las células sanguíneas facilita a los médicos el diagnóstico de diversas enfermedades de la sangre al analizar sus características. Diversas investigaciones han desarrollado diversos algoritmos que emplean métodos de aprendizaje profundo, específicamente Redes Neuronales, para clasificar los diversos tipos de glóbulos sanguíneos. Es por ello, que este trabajo de investigación, se presenta una revisión sistemática sobre el tema de Uso de Redes Neuronales en el Análisis de Frotis de Células Sanguíneas Periféricas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Cáncer. (s/f). Who.int. Recuperado el 15 de abril de 2024, de https://www.who.int/es/news-room/fact-sheets/detail/cancer

del Carmen Tarín Arzaga, L. (2016). Frotis de la sangre periférica en las enfermedades más frecuentes. En J. Pérez & D. Almaguer (Eds.), Hematología. La sangre y sus enfermedades. McGraw-Hill Education.

Picton, P. (1994). What is a neural network? En Introduction to Neural Networks (pp. 1–12). Macmillan Education UK.

SALUD. (s/f). 294. México registra al año más de 195 mil casos de cáncer: Secretaría de Salud. Gobierno de México. Recuperado el 15 de abril de 2024, de https://www.gob.mx/salud/prensa/294-mexico-registra-al-ano-mas-de-195-mil-casos-de-cancer-secretaria-de-salud

Acevedo, A., Alférez, S., Merino, A., Puigví, L., & Rodellar, J. (2019). RECOGNITION OF PERIPHERAL BLOOD CELL IMAGES USING CONVOLUTIONAL NEURAL NETWORKS. Computer Methods and Programs in Biomedicine, 105020. doi:10.1016/j.cmpb.2019.105020

Kutlu, H., Avci, E., & Özyurt, F. (2019). White Blood Cells Detection and Classification Based on Regional Convolutional Neural Networks. Medical Hypotheses, 109472. doi:10.1016/j.mehy.2019.109472

Hegde, R. B., Prasad, K., Hebbar, H., & Singh, B. M. K. (2019). Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybernetics and Biomedical Engineering. doi:10.1016/j.bbe.2019.01.005

Long, F., Peng, J.-J., Song, W., Xia, X., & Sang, J. (2021). BloodCaps: A capsule network based model for the multiclassification of human peripheral blood cells. Computer Methods and Programs in Biomedicine, 202, 105972. doi:10.1016/j.cmpb.2021.105972

Wang, Y., & Cao, Y. (2019). Human Peripheral Blood Leukocyte Classification Method Based on Convolutional Neural Network and Data Augmentation. Medical Physics. doi:10.1002/mp.13904

Molina, A., Rodellar, J., Boldú, L., Acevedo, A., Alférez, S., & Merino, A. (2021). Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks. Computers in Biology and Medicine, 136, 104680. doi:10.1016/j.compbiomed.2021.104680

Yao, X., Sun, K., Bu, X., Zhao, C., & Jin, Y. (2021). Classification of white blood cells using weighted optimized deformable convolutional neural networks. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 147–155. doi:10.1080/21691401.2021.1879823

Almezhghwi, K., & Serte, S. (2020). Improved classification of white blood cells with the generative adversarial network and deep convolutional neural network. Computational Intelligence and Neuroscience, 2020, 1–12. https://doi.org/10.1155/2020/6490479

Boldú, L., Merino, A., Acevedo, A., Molina, A., & Rodellar, J. (2021). A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Computer Methods and Programs in Biomedicine, 202, 105999. doi:10.1016/j.cmpb.2021.105999

Baydilli, Y. Y., & Atila, Ü. (2020). Classification of white blood cells using capsule networks. Computerized Medical Imaging and Graphics, 101699. doi:10.1016/j.compmedimag.2020.101699

Hegde, R. B., Prasad, K., Hebbar, H., & Singh, B. M. K. (2019). Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study. Australasian Physical & Engineering Sciences in Medicine, 42(2), 627–638. doi:10.1007/s13246-019-00742-9

Patil, A. M., Patil, M. D., & Birajdar, G. K. (2020). White Blood Cells Image Classification using Deep Learning with Canonical Correlation Analysis. IRBM. doi:10.1016/j.irbm.2020.08.005

Reena, M. R., & Ameer, P. M. (2020). Localization and recognition of leukocytes in peripheral blood: A deep learning approach. Computers in Biology and Medicine, 126, 104034. doi:10.1016/j.compbiomed.2020.104034

Çınar, A., & Tuncer, S. A. (2021). Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid Alexnet-GoogleNet-SVM. SN Applied Sciences, 3(4). doi:10.1007/s42452-021-04485-9

Delgado-Ortet, M., Molina, A., Alférez, S., Rodellar, J., & Merino, A. (2020). A deep learning approach for segmentation of red blood cell images and malaria detection. Entropy (Basel, Switzerland), 22(6), 657. https://doi.org/10.3390/e22060657

Kumar, R., Joshi, S., & Dwivedi, A. (2020). CNN-SSPSO: A Hybrid and Optimized CNN approach for peripheral blood cell image recognition and classification. International Journal of Pattern Recognition and Artificial Intelligence. doi:10.1142/s0218001421570044

Khouani, A., El Habib Daho, M., Mahmoudi, S. A., Chikh, M. A., & Benzineb, B. (2020). Automated recognition of white blood cells using deep learning. Biomedical Engineering Letters. doi:10.1007/s13534-020-00168-3

Publicado
2024-07-05
Cómo citar
Perez Guillen, L. F., Matuz Cruz, M. de J., Arana Llanes, J. Y., Guzmán Albores, J. M., Peralta González , M. S., & González Cárdenas, N. (2024). Uso de Redes Neuronales en el Análisis de Frotis de Células Sanguíneas Periféricas: una Revisión Sistemática de la Literatura. XIKUA Boletín Científico De La Escuela Superior De Tlahuelilpan, 12(24), 7-12. https://doi.org/10.29057/xikua.v12i24.12810
Tipo de manuscrito
Artículos

Artículos más leídos del mismo autor/a

1 2 > >>