Uso de Redes Neuronales en el Análisis de Frotis de Células Sanguíneas Periféricas: una Revisión Sistemática de la Literatura
Resumen
La automatización del reconocimiento y clasificación de las células sanguíneas facilita a los médicos el diagnóstico de diversas enfermedades de la sangre al analizar sus características. Diversas investigaciones han desarrollado diversos algoritmos que emplean métodos de aprendizaje profundo, específicamente Redes Neuronales, para clasificar los diversos tipos de glóbulos sanguíneos. Es por ello, que este trabajo de investigación, se presenta una revisión sistemática sobre el tema de Uso de Redes Neuronales en el Análisis de Frotis de Células Sanguíneas Periféricas.
Descargas
Citas
Cáncer. (s/f). Who.int. Recuperado el 15 de abril de 2024, de https://www.who.int/es/news-room/fact-sheets/detail/cancer
del Carmen Tarín Arzaga, L. (2016). Frotis de la sangre periférica en las enfermedades más frecuentes. En J. Pérez & D. Almaguer (Eds.), Hematología. La sangre y sus enfermedades. McGraw-Hill Education.
Picton, P. (1994). What is a neural network? En Introduction to Neural Networks (pp. 1–12). Macmillan Education UK.
SALUD. (s/f). 294. México registra al año más de 195 mil casos de cáncer: Secretaría de Salud. Gobierno de México. Recuperado el 15 de abril de 2024, de https://www.gob.mx/salud/prensa/294-mexico-registra-al-ano-mas-de-195-mil-casos-de-cancer-secretaria-de-salud
Acevedo, A., Alférez, S., Merino, A., Puigví, L., & Rodellar, J. (2019). RECOGNITION OF PERIPHERAL BLOOD CELL IMAGES USING CONVOLUTIONAL NEURAL NETWORKS. Computer Methods and Programs in Biomedicine, 105020. doi:10.1016/j.cmpb.2019.105020
Kutlu, H., Avci, E., & Özyurt, F. (2019). White Blood Cells Detection and Classification Based on Regional Convolutional Neural Networks. Medical Hypotheses, 109472. doi:10.1016/j.mehy.2019.109472
Hegde, R. B., Prasad, K., Hebbar, H., & Singh, B. M. K. (2019). Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybernetics and Biomedical Engineering. doi:10.1016/j.bbe.2019.01.005
Long, F., Peng, J.-J., Song, W., Xia, X., & Sang, J. (2021). BloodCaps: A capsule network based model for the multiclassification of human peripheral blood cells. Computer Methods and Programs in Biomedicine, 202, 105972. doi:10.1016/j.cmpb.2021.105972
Wang, Y., & Cao, Y. (2019). Human Peripheral Blood Leukocyte Classification Method Based on Convolutional Neural Network and Data Augmentation. Medical Physics. doi:10.1002/mp.13904
Molina, A., Rodellar, J., Boldú, L., Acevedo, A., Alférez, S., & Merino, A. (2021). Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks. Computers in Biology and Medicine, 136, 104680. doi:10.1016/j.compbiomed.2021.104680
Yao, X., Sun, K., Bu, X., Zhao, C., & Jin, Y. (2021). Classification of white blood cells using weighted optimized deformable convolutional neural networks. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 147–155. doi:10.1080/21691401.2021.1879823
Almezhghwi, K., & Serte, S. (2020). Improved classification of white blood cells with the generative adversarial network and deep convolutional neural network. Computational Intelligence and Neuroscience, 2020, 1–12. https://doi.org/10.1155/2020/6490479
Boldú, L., Merino, A., Acevedo, A., Molina, A., & Rodellar, J. (2021). A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Computer Methods and Programs in Biomedicine, 202, 105999. doi:10.1016/j.cmpb.2021.105999
Baydilli, Y. Y., & Atila, Ü. (2020). Classification of white blood cells using capsule networks. Computerized Medical Imaging and Graphics, 101699. doi:10.1016/j.compmedimag.2020.101699
Hegde, R. B., Prasad, K., Hebbar, H., & Singh, B. M. K. (2019). Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study. Australasian Physical & Engineering Sciences in Medicine, 42(2), 627–638. doi:10.1007/s13246-019-00742-9
Patil, A. M., Patil, M. D., & Birajdar, G. K. (2020). White Blood Cells Image Classification using Deep Learning with Canonical Correlation Analysis. IRBM. doi:10.1016/j.irbm.2020.08.005
Reena, M. R., & Ameer, P. M. (2020). Localization and recognition of leukocytes in peripheral blood: A deep learning approach. Computers in Biology and Medicine, 126, 104034. doi:10.1016/j.compbiomed.2020.104034
Çınar, A., & Tuncer, S. A. (2021). Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid Alexnet-GoogleNet-SVM. SN Applied Sciences, 3(4). doi:10.1007/s42452-021-04485-9
Delgado-Ortet, M., Molina, A., Alférez, S., Rodellar, J., & Merino, A. (2020). A deep learning approach for segmentation of red blood cell images and malaria detection. Entropy (Basel, Switzerland), 22(6), 657. https://doi.org/10.3390/e22060657
Kumar, R., Joshi, S., & Dwivedi, A. (2020). CNN-SSPSO: A Hybrid and Optimized CNN approach for peripheral blood cell image recognition and classification. International Journal of Pattern Recognition and Artificial Intelligence. doi:10.1142/s0218001421570044
Khouani, A., El Habib Daho, M., Mahmoudi, S. A., Chikh, M. A., & Benzineb, B. (2020). Automated recognition of white blood cells using deep learning. Biomedical Engineering Letters. doi:10.1007/s13534-020-00168-3
Derechos de autor 2024 Luis Francisco Perez Guillen, Manuel de Jesús Matuz Cruz, Julia Yazmín Arana Llanes, Jorge Martín Guzmán Albores, María Soledad Peralta González , Noé González Cárdenas
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.