Effect of the mechanical activation on the thermal decomposition of kyanite

Keywords: Kyanite, Mullite, Cristoballite, Silica

Abstract

The effect of the mechanical activation of kyanite powders (Al2O3•SiO2) on the thermal transformation into mullite (3Al2O3•2SiO2) and free silica (SiO2, in form of cristobalite) was studied. The kyanite powders were ground for 6 h and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The powders were cold uniaxially compacted in cylindrical samples (compacts) and sintered in a temperature range of 1150-1500 °C. These compacts are characterized by XRD, SEM, thermodilatometry analysis (TD) and differential thermal analysis (DTA). The resulting microstructure consists of equiaxial mullite grains immersed in a glassy phase. It was observed that kyanite milled begins to transform into mullite plus silica at 1150ºC. From 1300 °C only the mullite peaks and cristobalite are observed. The objective is to verify that mechanical activation activates nucleation sites where the mullite begins to form, decreasing the decomposition temperature of kyanite.

Downloads

Download data is not yet available.

References

Anggono, J., (2005). Mullite Ceramics: Its Properties, Structure, and Synthesis. Jurnal Teknik Mesin. Mullite 2005; 7, 1–10.

Barrientos Hernández, F. R., (2006). Sinterización reactiva de mezclas de cianita-aluminio para obtener mullita con bajo encogimiento de sinterización. Tesis de Maestría, ESIQIE, IPN

Carter, C. B., Grant, N. M., (2007). Ceramic Materials Science and Engineering. Springer, New York, N.Y.

Claussen, N., Wu, S., Holtz, D., (1994). Reaction bonding of aluminum oxide (RBAO) composites: Processing, reaction mechanisms and properties. J. Eur. Ceram. Soc. 14(2): 97-109

Gilchrist, J. D., (1977). Fuel, Furnaces and Refractories, Pergamon Press, London, England.

Guo, H., Ye, F., Li, W., Song, X., Xie, G., (2015). Preparation and characterization of foamed microporous mullite ceramics based on kyanite. Ceram. Int. 41(10): 14645–14651.

Holz, D., Wu, S., Scheppokat, S., Claussen, N., (1994). Effect of Processing Parameters on Phase and Microstructure in RBAO Ceramics. J. Am. Ceram. Soc. 77(10): 2509-2517.

Kingery, W. D., Bowen, H. K., Ulhman, D. R., (1976). Introduction to Ceramics. John Wiley and Sons. New York, N.Y.

Raghdi, A., Heraiz, M., Sahnoune, F., Saheb, N., (2017). Mullite-zirconia composites prepared from halloysite reaction sintered with boehmite and zirconia. Appl. Clay Sci. 146: 70-80.

Sahraoui, T., Belhouchet, H., Heraiz, M., Brihi, N., (2016). The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram. Int.

Sainz, M. A., Serrano, F. J., Bastida, J., Caballero, A., (1997). Microstructural Evolution and Growth of Crystallite Size of Mullite During Thermal Transformation of Kyanite. J. Eur. Ceram. Soc.

Schneider, H., Komarneni, S., (2005). Mullite, Wiley-VCH, Koln, Germany.

Schneider, H., Schreuer, J., Hildmann, B., (2008). Structure and properties of mullite-A review. J. Eur. Ceram. Soc. 28(2):329–344.

Surendranathan, A. O., (2015). An Introduction to Ceramics and Refractories. CRC Press, Boca Raton, Fl.

Wu, S., Holz, D., Claussen, N., (1993). Mechanisms and Kinetics of Reaction Bonded Aluminum Oxide Ceramics. J. Am. Ceram. Soc. 76(4): 970-80.

Zhang, C., Zhang, Z., Tan, Y., Zhong, M., (2017). The effect of citric acid on the kaolin activation and mullite formation. Ceram. Int. 43(1): 1466–1471.

Published
2021-10-05
How to Cite
Barrientos Hernández, F. R., Lira Hernández, I. A., Pérez Labra, M., Reyes Pérez, M., Martínez López, R., & Juárez Tapia, J. C. (2021). Effect of the mechanical activation on the thermal decomposition of kyanite. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 8(8), 37-41. https://doi.org/10.29057/aactm.v8i8.7584