Proceso de Impresión por Inyección Piezoeléctrica de Tintas de Ag y MoO3, Enfocado a su Aplicación en Celdas Solares Orgánicas

Palabras clave: Impresión por inyección piezoeléctrica de tinta, Goteo-sobre-demanda, Imprimibilidad, Plata impresa, Trióxido de molibdeno impreso

Resumen

Recientemente, la tecnología de impresión ha ofrecido una herramienta fundamental para el desarrollo de celdas solares fabricadas con materiales sustentables y sobre sustratos flexibles. Sin embargo, persisten diferentes retos por superar para mejorar el desempeño de estos dispositivos opto-electrónicos, como el control en la uniformidad del área impresa mediante los diferentes factores que influyen en el proceso. Por tales motivos, en este trabajo se estableció un proceso básico para la impresión por Goteo-Sobre-Demanda (DoD) de tintas comerciales de plata (Ag) y de trióxido de molibdeno (MoO3), formando directamente patrones con diferentes resoluciones. Esto se consiguió al aplicar una configuración del equipo de impresión que permite un modo DoD continuo, uniforme y repetible, además de las condiciones apropiadas durante el proceso y posterior a éste, y las caracterizaciones de algunas de sus propiedades. Derivado de este estudio, se dispone de una secuencia tecnológica general para mejorar los patrones impresos de Ag y MoO3 y su potencial aplicación en celdas solares orgánicas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Balendhran, S., Walia, S., Nili, H., Ou, J. Z., Zhuiykov, S., Kaner, R. B., Sriram, S., Bhaskaran, M., Kalantar-zdeh, K., (2013). Two-Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials 23, 3952–3970. DOI: 10.1002/adfm.201300125

Chen, W-Z., Luo, Q., Ma, C-Q., (2023). Inkjet-Printed Organic Solar Cells and Perovskite Solar Cells: Progress, Challenges, and Prospects. Chinese Journal of Polymer Science 41, 1169–1197. DOI: 10.1007/s10118-023-2961-z

Derby, B., Reis, N., (2003). Inkjet Printing of Highly Loaded Particulate Suspensions. MRS Bulletin: Inkjet Printing of Functional Materials 28, 815–818. DOI: 10.1557/mrs2003.230

Dressaire, E., Sauret, A., (2017). Clogging of microfluidic systems. Soft Matter 13, 37–48. DOI: 10.1039/C6SM01879C

Faddoul, R., Reverdy-Bruas, N., Blayo, A., (2013). Printing Force Effect on Conductive Silver Tracks: Geometrical, Surface, and Electrical Properties. Journal of Materials Engineering and Performance 22, 640–649. DOI: 10.1007/s11665-012-0245-9

Fromm, J. E., (1984). Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM Journal of Research and Development 28, 322–333. DOI: 10.1147/rd.283.0322

Ganesan, S., Mehta, S., Gupta, D., (2019). Fully printed organic solar cells – a review of techniques, challenges and solutions. Opto-Electronics Review 27, 298–320. DOI: 10.1016/j.opelre.2019.09.002

Garduño, S. I., Sacramento-Orduño, A., Ramírez-Como, M., Reyes-Valderrama, M. I., Rodríguez-Lugo, V., Estrada, M., (2023). Development of Drop-On-Demand Inkjet Process for the Fabrication of Thin-Film Printed Devices. 2023 IEEE Latin American Electron Devices Conference (LAEDC), Puebla, Mexico, 2023, 1–5. DOI: 10.1109/LAEDC58183.2023.10208285

Garduño, S. I., Fajardo, J., Rodríguez-Lugo, V., Estrada, M., (2021). Estudio sobre los parámetros de impresión para mejorar la inyección por goteo-sobre-demanda de ZnO y Al:ZnO. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI 9, 72–81. DOI: 10.29057/icbi.v9iEspecial2.7919

Kern, W., (1993). Handbook of semiconductor wafer cleaning technology. Noyes Publication, Ney Jersey, USA.

Li, Y., Dahhan, O., Filipe, C. D. M., Brennan, J. D., Pelton, R. H., (2019). Deposited Nanoparticles Can Promote Air Clogging of Piezoelectric Inkjet Printhead Nozzles. Langmuir 35, 5517–5524. DOI: 10.1021/acs.langmuir.8b04335

Mampallil, D., Eral, H. B., (2018). A review on suppression and utilization on the coffee-ring effect. Advances in Colloid and Interface Science 252, 38–54. DOI: 10.1016/j.cis.2017.12.008

Martin, G. D., Hoath, S. D., Hutchings, I. M., (2008). Inkjet printing - the physics of manipulating liquid jets and drops. Journal of Physics: Conference Series 105, 1–14. DOI: 10.1088/1742-6596/105/1/012001

Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., Kahn, A., (2012). Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. Advanced Materials 24, 5408–5427. DOI: 10.1002/adma.201201630

Ning, H., Chen, J., Fang, Z., Tao, R., Cai, W., Yao, R., Peng, J., (2017). Direct inkjet printing of silver source/drain electrodes on an amorphous InGaZnO layer for thin-film transistors. Materials 10, 1–7. DOI: 10.3390/ma10010051

Notz, P. K., Basaran, O. A., (2004). Dinamics and breakup of a contracting liquid filament. Journal of Fluid Mechanics 512, 223–256. DOI: 10.1017/S0022112004009759

Park, J. W., Kang, B. H., Kim, H. J., (2019). A Review of Low-Temperature Solution-Processed Metal Oxide Thin-Films Transistors for Flexible Electronics. Advanced Functional Materials 30, 1–40. DOI: 10.1002/adfm.201904632

Sacramento, A., Ramírez-Como, M., Balderrama, V. S., Sánchez, J. G., Pallarès, J., Marsal, L. F., Estrada, M., (2021). Comparative degradation analysis of V2O5, MoO3 and their stacks as hole transport layers in high-efficiency inverted polymer solar cells. Journal of Materials Chemistry C 20, 6518–6527. DOI: 10.1039/D1TC00219H

Salmeron, J. F., Molina-Lopez, F., Briand, D., Ruan, J. J., Rivadeneyra, A., Carvajal, M. A., Palma, A. J., (2014). Properties and printability of inkjet and screen-printed silver patterns for RFID antennas. Journal of Electronic Materials 43, 604–617. DOI: 10.1007/s11664-013-2893-4

Samos-Puerto, A., Rodríguez-Gattorno, G., Ruiz-Gómez, M. A., (2019). Fine tuning of inkjet printability parameters for NiO nanofilms fabrication. Colloids and Surfaces A: Physicochemical and Engineering Aspects 583, 3172–3187. DOI: 10.1063/1.869434

Schiaffino, S., Sonin, A. A., (1997). Molten droplet deposition and solidification at low Weber numbers. Physics of Fluids 9, 3172–3187. DOI: 10.1063/1.869434

Shen, W., Zhang, X., Huang, Q., Xu, Q., Song W., (2014). Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6, 1622–1628. DOI: 10.1039/C3NR05479A

Sigma-Aldrich, (2024). Silver nanoparticles ink. Ficha de datos de seguridad, disponible en: https://www.sigmaaldrich.com

Sigma-Aldrich, (2021). Molibdenum oxide ink. Ficha de datos de seguridad, disponible en: https://www.sigmaaldrich.com

Stahrenberg, K., Herrmann, T., Wilmers, K., Esser, N., Richter, W., Lee, M. J. G., (2001). Optical properties of copper and silver in the energy range 2.5−9.0 eV. Physics Reviews B 64, 1–7. DOI:10.1103/PhysRevB.64.115111

Steinberger, M., Distler, A., Hörber, J., Tam, K. C., Brabec, C. J., Egelhaaf, H-J., (2024). All Inkjet-printed Organic Solar Cells on 3D Objects. Flexible and Printed Electronics 64, 1–7. DOI:10.1103/PhysRevB.64.115111

Vos, M. F. J., Macco, B., Thissen, N. F. W., Bol, A. A., Kessels, W. M. M., (2016). Atomic layer deposition of molybdenum oxide from (NtBu)2(NMe2)2Mo and O2 plasma. Journal of Vacuum Science & Technology A 34, 1–7. DOI: 10.1116/1.4930161

Publicado
2024-10-05
Cómo citar
Garduño, S. I., Santos Hernández, C., Sánchez Vargas, F. C., Reyes Valderrama, M. I., Rodríguez-Lugo, V., & Estrada, M. (2024). Proceso de Impresión por Inyección Piezoeléctrica de Tintas de Ag y MoO3, Enfocado a su Aplicación en Celdas Solares Orgánicas. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 11(11), 1-8. https://doi.org/10.29057/aactm.v11i11.13187