El vidrio

Palabras clave: Vidrio, transición vítrea, propiedades físicas

Resumen

Se habla brevemente del vidrio y algunas teorías físicas para caracterizar o modelar la transición vítrea. El vidrio se utiliza para muchas aplicaciones en la vida cotidiana, no obstante, a pesar de que se han utilizado materiales vítreos desde hace milenios no existe una teoría física de primeros principios que describa completamente el comportamiento de las propiedades físicas cerca de la temperatura en que se considera que existe la transición vítrea, Tg.

Citas

Askeland Donald R. PPP. Ciencia e ingeniería de los materiales. Cuarta. México, D.F.: Thomson; 2004. 644 p.

Navarro JMF. El vidrio. Tercera. Madrid, España: CSIC; 2003. 62-63 p.

Valencia UP de. Consideraciones de la caracterización de la Transición Vítrea. https://www.youtube.com/watch?v=q8mVFhN3o6o. 2011.

Hodge IM. Physical Aging in Polymer Glasses. Science. 1995; 267:19457.

Abou B, Bonn D, Meunier J. Aging dynamics in a colloidal glass. Physical Rev. 2001; 64:16.

Bonn D, Tanase S, Abou B, Tanaka H, Meunier J. Laponite: Aging and Shear Rejuvenation of a Colloidal Glass. Phys Rev Lett. 2002; 89(1):14.

Leheny RL, Nagel SR. Frequency-domain study of physical aging in a simple liquid. Phys Rev B. 1998;57(9):515462.

Lunkenheimer P, Wehn R, Schneider U, Loidl A. Glassy Aging Dynamics. Phys Rev Lett. 2005; 95:14.

T. Jonsson, J. Mattsson, C. Djuberg, F.A. Khan, P. Nordbland PS. Aging in a Magnetic Particle System. Phys Rev Lett. 1995; 75(22):413841.

Djurberg C, Svedlindh P, Nordblad P. Dynamics of an Interacting Particle System: Evidence of Critical Slowing Down. Phys Rev Lett. 1997;79(25):51547.

Sasaki M, Jönsson P., Takayama H, Mamiya H. Aging and memory effects in superparamagnets and superspin glasses. Phys Rev B. 2005;71:19.

Gibbs JH, DiMarzio EA. Nature of the Glass Transition and the Glassy State. J Chem Phys. 1958; 28:37383.

Ediger MD, Angell CA, Nagel SR. Supercooled Liquids and Glasses. J Phys Chem. 1996;100(31):1320012.

Sillescu H. Heterogeneity at the glass transition: a review. J Non Cryst Solids. 1999; 243:81108.

Kob W, Barrat J. Aging Effects in a Lennard-Jones Glass. Phys Rev Lett. 1997; 78(24):45814.

Casalini R, Roland CM. Thermodynamical scaling of the glass transition dynamics. Phys Rev E. 2004; 69:13.

Lubchenko V, Wolynes PG. Theory of Structural Glasses and Supercooled Liquids. Annu Rev Phys Chem. 2008;58:23566.

Debenedetti P.G. SFH. Supercooled liquids and the glass transition. Nature. 2001;410:25967.

Berthier L, Biroli G. Theoretical perspective on the glass transition and amorphous materials. Rev Mod Phys. 2011; 83:587645.

Pedro Ramírez González MMN. Aging of a homogeneously quenched coloidal glass-forming liquid. Am Phys Soc. 2010; 82:102.

Ramírez González PE, López Flores L, Acuña Campa H, Medina Noyola M. Density-Temperature-Softness Scaling of the Dynamics of Glass-Forming Soft- Sphere Liquids. Phys Rev Lett. 2011;107:15.

López Flores L, Ruíz Estrada H, Chávez Páez M, Medina Noyola M. Dynamic equivalences in the hard-sphere dynamic universality class. Phys Rev E. 2013;88:116.

Bengtzelius U, Gotze W, Sjlander A. Dynamics of supercooled liquids and the glass transition. J Phys Chem. 1989;17:591534.

Charbonneau B, Charbonneau P, Tarjus G. Geometrical Frustration and Static Correlations in a Simple Glass Former. Phys Rev Lett. 2012;108:15.

Wolfgang G. Recent tests of the mode-coupling theory for glassy dynamics Recent tests of the mode-coupling theory for glassy dynamics. Science (80- ). 1999; 1:A145.

Weeks ER, Crocker JC, Levitt AC, Weitz DA. Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition. Science (80-). 1994;287:62732.

Saklayen N, Hunter GL, Edmond K V, Weeks ER, Saklayen N, Hunter GL, et al. Slow dynamics in cylindrically confined colloidal suspensions. Am Inst Phys. 2013; 1518:32835.

Hunter GL, Weeks ER. The physics of the colloidal glass transition. Rep Prog Phys [Internet]. 2012 Jun 17 [cited 2015 Aug 11];75(6):140. Available from: http://arxiv.org/abs/1106.3581

Assoud L, Ebert F, Keim P, Messina R, Maret G. Crystal nuclei and structural correlations in two-dimensional colloidal mixtures: experiment versus simulation. J Phys Condens Matter. 2009; 21:16.

König H, Zahn K, Maret G. Glass transition in a two-dimensional system of magnetic colloids. Am Inst Phys. 2004; 40:16.

Köning H. Elementary triangles in a 2D binary colloidal glass former. Europhys Lett. 2005;71(5):83844.

König H, Hund R, Zahn K, Maret G. Experimental realization of a model glass former in 2D. Eur Phys J E. 2005; 293:28793.

Garrahan JP, Chandler D. Coarse-grained microscopic model of glass formers. PNAS. 2003;100(17):97104.

Publicado
2023-01-05
Cómo citar
Tapia-Ignacio , C. (2023). El vidrio. Con-Ciencia Boletín Científico De La Escuela Preparatoria No. 3, 10(19), 20-22. Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/prepa3/article/view/10437