Estudios de casos y controles: Propuesta de robustez de análisis para ciencias de la conducta

Palabras clave: Análisis estadístico, tamaño del efecto, robustez de análisis, ciencias de la conducta

Resumen

En el campo de las ciencias de la conducta resulta indispensable realizar interpretaciones adecuadas de los resultados obtenidos que permitan el rechazo de la hipótesis nula. Se conoce que las características propias de la disciplina cuentan con desventajas para el abordaje estadístico en comparación con otras áreas aplicadas del conocimiento, donde por naturaleza se tiene mayor probabilidad de obtener datos con distribuciones normales y, por lo tanto, usar técnicas paramétricas. Dado lo anterior es que se realiza una recopilación de información de los elementos de mayor importancia sugeridos para ampliar mejorar la robustez de la interpretación tanto para técnicas paramétricas como para las no paramétricas. 

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jesua I. Guzmán-González, Universidad de Guadalajara

Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara

Franco G. Sánchez-García, Universidad de Guadalajara

Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara

Luis M. Sánchez-Loyo, Universidad de Guadalajara

Departamento de Estudios en Lenguas Indígenas, Centro Universitario de Ciencias de la Sociales y Humanidades, Universidad de Guadalajara

Saúl Ramírez-de los Santos, Universidad de Guadalajara

Departamento de Psicología Básica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara

Citas

Al-Saleh, M. F., & Samawi, H. M. (2007). Interference on Overlapping Coefficients in Two Exponential Populations. Journal of Modern Applied Statistical Methods, 6(2), 503–516. https://doi.org/10.22237/jmasm/1193890440

APA. (2008). Reporting standards for research in psychology: Why do we need them? What might they be? American Psychologist, 63(9), 839–851. https://doi.org/10.1037/0003-066X.63.9.839

Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report. American Psychologist, 73(1), 3–25. https://doi.org/10.1037/amp0000191

Baguley, T. (2009). Standardized or simple effect size: What should be reported? British Journal of Psychology, 100(3), 603–617. https://doi.org/10.1348/000712608X377117

Begley, C. G., & Ellis, L. M. (2012). Raise standards for preclinical cancer research. Nature, 483(7391), 531–533. https://doi.org/10.1038/483531a

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376. https://doi.org/10.1038/nrn3475

Chernoff, H., & Savage, I. R. (1958). Asymptotic Normality and Efficiency of Certain Nonparametric Test Statistics. The Annals of Mathematical Statistics, 29(4), 972–994. http://www.jstor.org/stable/2236941

Chmura-Kraemer, H. (2014). Wiley StatsRef: Statistics Reference Online (N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (eds.)). Wiley. https://doi.org/10.1002/9781118445112

Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/10.4324/9780203771587

Colquhoun, D. (2017). The reproducibility of research and the misinterpretation of p -values. Royal Society Open Science, 4(12), 171085. https://doi.org/10.1098/rsos.171085

Cureton, E. E. (1956). Rank-biserial correlation. Psychometrika, 21(3), 287–290. https://doi.org/10.1007/BF02289138

De la Fuente, E. I., Cañadas, G. R., Guàrdia, J., & Lozano, L. M. (2009). Hypothesis Probability or Statistical Significance? Methodology, 5(1), 35–39. https://doi.org/10.1027/1614-2241.5.1.35

Dixon, W. J. (1954). Power Under Normality of Several Nonparametric Tests. The Annals of Mathematical Statistics, 25(3), 610–614.

Dudley-Marling, C. (2010). The myth of the normal curve (1st ed.). Peter Lang.

Ellis, P. D. (2010). The Essential Guide to Effect Sizes. In The Essential Guide to Effect Sizes. Cambridge University Press. https://doi.org/10.1017/cbo9780511761676

Friedman, H. (1968). Magnitude of experimental effect and a table for its rapid estimation. Psychological Bulletin, 70(4), 245–251. https://doi.org/10.1037/h0026258

Galvez-Contreras, A. Y., Guzmán-Muñiz, J., Moy-López, N. A., & Gonzalez-Perez, O. (2022). Contributions of Latin America to scientific research in neuroscience and psychology. Revista Mexicana de Neurociencia, 23(2). https://doi.org/10.24875/RMN.21000034

García, J., Ortega, E., & De la Fuente, L. (2008). Tamaño del efecto en las revistas de Psicología indizadas en Redalyc. Informes Psicológicos, 10(11), 173–188.

Glass, G. V., McGaw, B., & G.V., S. (1981). Meta-Analysis in Social Research. SAGE publiclations inc.

Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology, 31(4), 337–350. https://doi.org/10.1007/s10654-016-0149-3

Gurnsey, R. (2017). Statistics for research in Psychology: A modern approach using estimation. SAGE publiclations inc.

Guzmán-González, J. I., Sánchez-García, F., Madera-Carrillo, H., & Medina-Aguayo, F. (2019). Propuesta de verificación de la robustez del análisis y comprobación de hipótesis en los resultados de estudios en neurociencia cognitiva, psicología y medicina. Revista Mexicana de Investigación En Psicología, 11(2).

Hartgerink, C. H. J., Wicherts, J. M., & van Assen, M. A. L. M. (2017). Too Good to be False: Nonsignificant Results Revisited. Collabra: Psychology, 3(1). https://doi.org/10.1525/collabra.71

Hedges, L. V. (1981). Distribution Theory for Glass’s Estimator of Effect size and Related Estimators. Journal of Educational Statistics, 6(2), 107–128. https://doi.org/10.3102/10769986006002107

Hill, M., & Dixon, W. J. (1982). Robustness in Real Life: A Study of Clinical Laboratory Data. Biometrics, 38(2), 377. https://doi.org/10.2307/2530452

Hodges, J. L., & Lehmann, E. L. (1956). The Efficiency of Some Nonparametric Competitors of the t-Test. The Annals of Mathematical Statistics, 27(2), 324–335. http://www.jstor.org/stable/2236996

Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS Medicine, 2(8), e124. https://doi.org/10.1371/journal.pmed.0020124

Kerlinger, F. N. (1966). Foundations of behavioral research (Vol. 1). Holt, Rinehart and Winston. https://psycnet.apa.org/record/1966-35003-000

Kerri A. Goodwin, C., & James Goodwin. (2017). Research in Psychology: Methods and Design (8th ed.). John Wiley & Sons.

Kirk, R. E. (2003). The importance of effect magnitude. In S. Davis (Ed.), Handbook of Research Methods in Experimental Psychology (pp. 83–105). Blackwell.

Kitchen, C. M. R. (2009). Nonparametric vs Parametric Tests of Location in Biomedical Research. American Journal of Ophthalmology, 147(4), 571–572. https://doi.org/10.1016/j.ajo.2008.06.031

Luce, M. F., & Kahn, B. E. (1999). Avoidance Or Vigilance? the Psychology of False‐Positive Test Results. Journal of Consumer Research, 26(3), 242–259. https://doi.org/10.1086/209561

Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50–60. https://doi.org/10.1214/aoms/1177730491

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105(1), 156–166. https://doi.org/10.1037/0033-2909.105.1.156

Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific Utopia. Perspectives on Psychological Science, 7(6), 615–631. https://doi.org/10.1177/1745691612459058

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://psycnet.apa.org/buy/2003-08045-010

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. https://doi.org/10.3758/PBR.16.2.225

Schönbrodt, F. D., & Wagenmakers, E.-J. (2018). Bayes factor design analysis: Planning for compelling evidence. Psychonomic Bulletin & Review, 25(1), 128–142. https://doi.org/10.3758/s13423-017-1230-y

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632

SJR. (2022, September 29). International Science Ranking. https://www.scimagojr.com/countryrank.php?area=3200

Smith, P. L., & Little, D. R. (2018). Small is beautiful: In defense of the small-N design. Psychonomic Bulletin & Review, 25(6), 2083–2101. https://doi.org/10.3758/s13423-018-1451-8

Stigler, S. M. (1977). Do Robust Estimators Work with Real Data? The Annals of Statistics, 5(6). https://doi.org/10.1214/aos/1176343997

Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLOS Biology, 15(3), e2000797. https://doi.org/10.1371/journal.pbio.2000797

Tanizaki, H. (1997). Power comparison of non-parametric tests: Small-sample properties from Monte Carlo experiments. Journal of Applied Statistics, 24(5), 603–632. https://doi.org/10.1080/02664769723576

The jamovi project. (2020). Jamovi (1.2). https://www.jamovi.org

Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a World Beyond “p < 0.05.” American Statistician, 73(1), 1–19. https://doi.org/10.1080/00031305.2019.1583913

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J. (2011). Statistical Evidence in Experimental Psychology. Perspectives on Psychological Science, 6(3), 291–298. https://doi.org/10.1177/1745691611406923

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6), 80. https://doi.org/10.2307/3001968

Publicado
2023-06-05
Cómo citar
Guzmán-González, J. I., Sánchez-García, F. G., Sánchez-Loyo, L. M., & Ramírez-de los Santos, S. (2023). Estudios de casos y controles: Propuesta de robustez de análisis para ciencias de la conducta. Educación Y Salud Boletín Científico Instituto De Ciencias De La Salud Universidad Autónoma Del Estado De Hidalgo, 11(22), 139-146. https://doi.org/10.29057/icsa.v11i22.10486