Fibra dietética vs obesidad ¿Cómo se relacionan las propiedades de la fibra dietética con el control de peso corporal?

Palabras clave: Fibra dietética, obesidad, fermentación, efectos a la salud, metabolismo, pérdida de peso, control de peso

Resumen

La obesidad es una enfermedad que actualmente tiene una gran prevalencia en todo el mundo, además, podría desencadenar el desarrollo de otras afecciones relacionadas con la acumulación excesiva de tejido adiposo en el cuerpo humano. Esta problemática ha conllevado a la recomendación de un tratamiento oportuno, mediante una dieta saludable con un alto contenido de fibra dietética (FD). Distintas instituciones alimentarias y de salud han informado sobre la ingesta diaria recomendada (IDR) de FD, en base al nivel de consumo observada para prevenir la aparición de enfermedades cardiovasculares. Para alcanzar las cantidades recomendadas de FD, dentro de la dieta, es preferible seleccionar alimentos como cereales, pseudocereales, legumbres, frutas y verduras ya que son los alimentos que la contienen. La FD es un componente no digerible de los alimentos que ha sido estudiado ampliamente, no obstante, su importancia nutricional fue reconocida hasta la década de 1970, demostrando su asociación positiva con la regulación del peso corporal y la reducción de adipocitos almacenados en el organismo. Existen diferentes clasificaciones referentes a la FD, sin embargo, una de las más utilizadas se basa en su capacidad de ser solubilizada “soluble (FDS) e insoluble (FDI)”. Se ha identificado que la FDS tiene una mayor asociación con las propiedades antes mencionadas, no obstante, es necesario que exista un equilibrio entre ambas fibras, debido a que un exceso de estas podría generar efectos no deseados en nuestro cuerpo. Las principales propiedades de la FD se asocian con sus atributos físicos y químicos que incluyen: su capacidad de absorber agua y otras sustancias, hincharse y aumentar su viscosidad. Además, es capaz de ser fermentada por la microbiota intestinal, generando metabolitos benéficos para la salud. Estas propiedades participan en diferentes mecanismos que disminuyen la absorción de nutrientes, la supresión del apetito, y la regulación de la homeostasis energética mediante el metabolismo de lípidos y carbohidratos. Por lo tanto, es importante conocer sobre las propiedades y mecanismos en los que interviene la FD durante la digestión y el cómo repercute en la salud.

Descargas

La descarga de datos todavía no está disponible.

Citas

Soeroto AY, Soetedjo NN, Purwiga A, Santoso P, Kulsum ID, Suryadinata H, et al. Effect of increased BMI and obesity on the outcome of COVID-19 adult patients: A systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020; 14(6): 1897-1904. https://doi.org/10.1016/j.dsx.2020.09.029

Organización Mundial de la Salud (OMS). Obesidad y sobrepeso. 2021. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight . Consultado: 24/06/22.

Torres F, Rojas A. Obesidad y salud pública en México: transformación del patrón hegemónico de oferta-demanda de alimentos. Problemas del Desarrollo. 2018; 49(193): 145-169. https://doi.org/10.22201/iiec.20078951e.2018.193.63185

Jackson SE, Llewellyn CH, Smith L. The obesity epidemic–Nature via nurture: A narrative review of high-income countries. SAGE Open Medicine. 2020; 8: 2050312120918265. https://doi.org/10.1177/2050312120918265

Popa AR, Fratila O, Rus M, Aron RA, Vesa CM, Pantis C, et al. Risk factors for adiposity in the urban population and influence on the prevalence of overweight and obesity. Experimental and Therapeutic Medicine. 2020; 20(1): 129-133. https://doi.org/10.3892/etm.2020.8662

Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019; 92: 6-10. https://doi.org/10.1016/j.metabol.2018.09.005

Joint FAO/WHO Food Standards Programme, Secretariat of the CODEX Alimentarius Commission: CODEX Alimentarius (CODEX) Guidelines on Nutrition Labeling CAC/GL 2–1985 as Last Amended 2010. Rome: FAO; 2010. https://files.foodmate.com/2013/files_1746.html

Alvarado-Jasso GM, Camacho-Díaz BH, Ocampo ML, Jiménez-Ferrer JE, Mora-Escobedo R, Osorio-Díaz P. Prebiotic effects of a mixture of agavins and green banana flour in a mouse model of obesity. Journal of Functional Foods. 2020; 64: 103685. https://doi.org/10.1016/j.jff.2019.103685

Dayib, M., Larson, J., & Slavin, J. (2020). Dietary fibers reduce obesity-related disorders: mechanisms of action. Current Opinion in Clinical Nutrition & Metabolic Care, 23(6), 445-450. https://doi.org/10.1097/MCO.0000000000000696

Gibbons C, Hopkins M, Beaulieu K, Oustric P, Blundell JE. Issues in measuring and interpreting human appetite (satiety/satiation) and its contribution to obesity. Current Obesity Reports. 2019; 8(2): 77-87. https://doi.org/10.1007/s13679-019-00340-6

Weitkunat K, Stuhlmann C, Postel A, Rumberger S, Fankhänel M, Woting A, et al. Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Scientific Reports. 2017; 7(1): 1-13. https://doi.org/10.1038/s41598-017-06447-x

Stephen AM, Champ MM, Cloran SJ, Fleith M, van Lieshout L, Mejborn H, Burley VJ. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutrition Research Reviews. 2017; 30(2):149-190. https://doi.org/10.1017/S095442241700004X

Korczak R, Slavin JL. Definitions, regulations, and new frontiers for dietary fiber and whole grains. Nutrition Reviews. 2020; 78(S1): 6-12. https://doi.org/10.1093/nutrit/nuz061

NOM-051-SCFI/SSA1-2010. Especificaciones generales de etiquetado de alimentos y bebidas no alcohólicas preenvasados-Información comercial y sanitaria. En: http://www.dof.gob.mx/normasOficiales/4010/seeco11_C/seeco11_C.htm .

Serna-Saldívar SO, Sánchez-Hernández D. Dietary Fiber in Cereals, Legumes, Pseudocereals and Other Seeds. En Welti-Chanes J, Serna-Saldivar SO, Campanella O, Tejada-Ortigoza V. Science and Technology of Fibers in Food Systems. Springer Nature; 2020: 87-122. https://doi.org/10.1007/978-3-030-38654-2_5

Morales-de la Peña M, Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. Dietary fiber in fruits and vegetables. En Welti-Chanes J, Serna-Saldivar SO, Campanella O, Tejada-Ortigoza V. Science and Technology of Fibers in Food Systems. Cham, Switzerland: Springer Nature; 2020. 123-152. https://doi.org/10.1007/978-3-030-38654-2_6

Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020; 12(4): 1107. https://doi.org/10.3390/nu12041107

Khan K, Jovanovski E, Ho HV, Marques AC, Zurbau A, Mejia SB, et al. The effect of viscous soluble fiber on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases. 2018; 28(1): 3-13. https://doi.org/10.1016/j.numecd.2017.09.007

Hadri Z. Unravelling the effect of viscous fiber on food intake: A review of studies. South Asian Journal of Experimental Biology. 2020; 10(5): 313-321. https://doi.org/10.38150/sajeb.10(5).p313-32

Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018; 67(7): 1269-1279. http://dx.doi.org/10.1136/gutjnl-2017-314050

Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172-184. https://doi.org/10.1080/19490976.2017.1290756

Williams BA, Mikkelsen D, Flanagan BM, Gidley MJ. “Dietary fibre”: moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. Journal of Animal Science and Biotechnology. 2019; 10(1): 1-12. https://doi.org/10.1186/s40104-019-0350-9

Dai FJ, Chau CF. Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis. 2017; 25(1): 37-42. https://doi.org/10.1016/j.jfda.2016.09.006

Gidley MJ, Yakubov GE. Functional categorisation of dietary fibre in foods: Beyond ‘soluble’vs ‘insoluble’. Trends in Food Science & Technology. 2019; 86: 563-568. https://doi.org/10.1016/j.tifs.2018.12.006

Jia M, Yu Q, Chen J, He Z, Chen Y, Xie J, et al. Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocolloids. 2020; 99: 105349. https://doi.org/10.1016/j.foodhyd.2019.105349

Nagy R, Máthé E, Csapó J, Sipos P. Modifying effects of physical processes on starch and dietary fiber content of foodstuffs. Processes. 2021; 9(1): 17. https://doi.org/10.3390/pr9010017

Müller M, Hernández MA, Goossens GH, Reijnders D, Holst JJ, Jocken JW, et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Scientific Reports. 2019; 9(1): 1-9. https://doi.org/10.1038/s41598-019-48775-0

Gu Y, Zhao J, Johnson JA. Polymer networks: from plastics and gels to porous frameworks. Angewandte Chemie International Edition. 2020; 59(13): 5022-5049. https://doi.org/10.1002/anie.201902900

Holland C, Ryden P, Edwards CH, Grundy MM. Plant cell walls: Impact on nutrient bioaccessibility and digestibility. Foods. 2020; 9(2): 201. https://doi.org/10.3390/foods9020201

Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQ, Sperandio M, Di Ciaula A. Gut microbiota and short chain fatty acids: implications in glucose homeostasis. International Journal of Molecular Sciences. 2022; 23(3): 1105. https://doi.org/10.3390/ijms23031105

Marasca E, Boulos S, Nyström L. Bile acid-retention by native and modified oat and barley β-glucan. Carbohydrate Polymers. 2020; 236: 116034. https://doi.org/10.1016/j.carbpol.2020.116034

Zeng H, Hamlin SK, Safratowich BD, Cheng WH, Johnson LK. Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: Linking dietary fiber to cancer prevention. Nutrition Research. 2020; 83: 63-72. https://doi.org/10.1016/j.nutres.2020.08.009

Grundy MM, Quint J, Rieder A, Ballance S, Dreiss CA, Butterworth PJ, et al. Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan. Carbohydrate Polymers. 2017; 166: 387-397. https://doi.org/10.1016/j.carbpol.2017.02.077

Liu JL, Segovia I, Yuan CL, Gao ZH. Controversial roles of gut microbiota-derived short-chain fatty acids (SCFAs) on pancreatic β-cell growth and insulin secretion. International Journal of Molecular Sciences. 2020; 21(3): 910. https://doi.org/10.3390/ijms21030910

Higa M, Fuse Y, Miyashita N, Fujitani A, Yamashita K, Ichijo T, et al. Effect of high β-glucan barley on postprandial blood glucose levels in subjects with normal glucose tolerance: assessment by meal tolerance test and continuous glucose monitoring system. Clinical Nutrition Research. 2019; 8(1): 55-63. https://doi.org/10.7762/cnr.2019.8.1.55

Rautmann AW, de La Serre CB. Microbiota’s Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients. 2021; 13(9): 3067. https://doi.org/10.3390/nu13093067

Pedersen AM, Sørensen CE, Proctor GB, Carpenter GH. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral Diseases. 2018; 24(8): 1399-1416. https://doi.org/10.1111/odi.12867

Shimizu H, Masujima Y, Ushiroda C, Mizushima R, Taira S, Ohue-Kitano R, et al. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific Reports. 2019; 9(1): 1-10. https://doi.org/10.1038/s41598-019-53242-x

Jiao A, Yu B, He J, Yu J, Zheng P, Luo Y, et al. Sodium acetate, propionate, and butyrate reduce fat accumulation in mice via modulating appetite and relevant genes. Nutrition. 2021; 87(88): 111198. https://doi.org/10.1016/j.nut.2021.111198

Yoshida H, Ishii M, Akagawa M. Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Archives of Biochemistry and Biophysics. 2019; 672: 108057. https://doi.org/10.1016/j.abb.2019.07.022

Brooks L, Viardot A, Tsakmaki A, Stolarczyk E, Howard JK, Cani PD, et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Molecular Metabolism. 2017; 6(1): 48-60. https://doi.org/10.1016/j.molmet.2016.10.011

Ge TT, Yao XX, Zhao FL, Zhao XH, Yang W, Cui RJ, et al. Role of leptin in the regulation of food intake in fasted mice. Journal of cellular and molecular medicine. 2020; 24(8): 4524-4532. https://doi.org/10.1111/jcmm.15110

Mollica MP, Raso GM, Cavaliere G, Trinchese G, De Filippo C, Aceto S, et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes. 2017; 66(5): 1405-1418. https://doi.org/10.2337/db16-0924

Liu H, Peng H, Xiang H, Guo L, Chen R, Zhao S, et al. TWEAK/Fn14 promotes oxidative stress through AMPK/PGC 1α/MnSOD signaling pathway in endothelial cells. Molecular Medicine Reports. 2018; 17(1): 1998-2004. https://doi.org/10.3892/mmr.2017.8090

He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. International Journal of Molecular Sciences. 2020; 21(17): 6356. https://doi.org/10.3390/ijms21176356

Zheng F, Cai Y. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-γ and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet. Lipids in Health and Disease. 2019; 18(1): 1-8. https://doi.org/10.1186/s12944-018-0933-z

Hong J, Jia Y, Shifeng S, Jiia L, Li H, Han Z, et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget. 2016; 7(35): 56071-56082. https://doi.org/10.18632/oncotarget.11267

Zhou H, Yu B, Sun J, Liu Z, Chen H, Ge L, et al. Short-chain fatty acids can improve lipid and glucose metabolism independently of the pig gut microbiota. Journal of Animal Science and Biotechnology. 2021; 12(1): 1-14. https://doi.org/10.1186/s40104-021-00581-3

Sepahi A, Liu Q, Friesen L, Kim CH. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunology. 2021; 14(2): 317-330. https://doi.org/10.1038/s41385-020-0312-8

Riddy DM, Delerive P, Summers RJ, Sexton PM, Langmead CJ. G protein–coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacological Reviews. 2018; 70(1): 39-67. https://doi.org/10.1124/pr.117.014373

Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein‐coupled receptor signaling in obesity and type 2 diabetes. The FEBS Journal. 2021; 288(8): 2622-2644. https://doi.org/10.1111/febs.15800

Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports. 2018; 7(4): 198-206. https://doi.org/10.1007/s13668-018-0248-8

Cerf ME. Beta Cell Physiological dynamics and dysfunctional transitions in response to islet inflammation in obesity and diabetes. Metabolites. 2020; 10(11): 452. https://doi.org/10.3390/metabo10110452

Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nature Metabolism. 2020; 2(9): 840-848. https://doi.org/10.1038/s42255-020-0188-7

Publicado
2023-12-05
Cómo citar
Romero-Flores, J., Alanís-García, E., Delgado-Olivares, L., Ariza-Ortega, J. A., & Calderón-Ramos, Z. G. (2023). Fibra dietética vs obesidad ¿Cómo se relacionan las propiedades de la fibra dietética con el control de peso corporal?. Educación Y Salud Boletín Científico Instituto De Ciencias De La Salud Universidad Autónoma Del Estado De Hidalgo, 12(23), 68-78. https://doi.org/10.29057/icsa.v12i23.11282

Artículos más leídos del mismo autor/a

1 2 > >>