Implicaciones en la salud de los B-glucanos de cebada
Resumen
El grano de cebada es una importante fuente de β-glucanos, el cual es un polisacárido que forma parte de la fibra dietética (FD) soluble. La fibra soluble tiene mejores propiedades de hidratación, al igual que la fermentación y la producción de ácidos grasos de cadena corta (AGCC). Los β-glucanos proporcionan numerosos beneficios a la salud humana. La presente revisión tiene como objetivo analizar la evidencia actual e informar sobre las modificaciones que sufre durante el consumo, su adición y propiedades funcionales de los β-glucanos de cebada, permitiendo obtener los beneficios a la salud (hipolipidémico, hipoglucémico e hipocolesterolémico). De acuerdo con la revisión, se ha encontrado que contribuyen a disminuir el colesterol total y el cLDL, a prevenir la grasa visceral y el riesgo de enfermedad diverticular, así mismo provocan retraso en el vaciamiento gástrico y atenuación de la velocidad de absorción de la glucosa en el intestino delgado. Además, pueden colaborar a aliviar lesiones gástricas y participar en la actividad anticancerosa y el carcinoma de pulmón; también, su aplicación tópica mejora la cicatrización de úlceras diabéticas y venosas. La evidencia de los estudios recientes demuestra consistentemente que el consumo de β-glucanos se asocia con múltiples beneficios, desde la disminución de la absorción de macronutrientes, hasta la cicatrización de heridas. Esto destaca aún más la importancia de su consumo y utilización.
Descargas
Citas
Brownlee IA, Chater PI, Pearson JP and Wilcox MD. (2017). Dietary fibre and weight loss: Where are we now? Food Hydrocoll. 68:186-191.
Whitehead, A., Beck, E. J., Tosh, S., & Wolever, T. M. (2014). Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 100(6), 1413-1421
Villacrés E, Campaña D, Garófalo J, Falconí E, Quelal M, Matanguihan J and Murphy K. (2019). Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes. Agronomía Colombiana 37(3):323-330.
Aktas-Akyildiz E, Sibakov J, Nappa M, Hytönen E, Koksel H and Poutanen K. (2018). Extraction of soluble β-glucan from oat and barley fractions: Process efficiency and dispersion stability. Journal of Cereal Science, 81:60–68.
De Paula R, Abdel-Aal ESM, Messia MC, Rabalski I and Marconi E. (2017). Effect of processing on the beta-glucan physicochemical properties in barley and semolina pasta. Journal of Cereal Science, 75:124–131.
Kim H and Kim H. (2017). Physicochemical characteristics and in vitro bile acid binding and starch digestion of β-glucans extracted from different varieties of Jeju barley. Food Sci Biotechnol, 26:1501–1510.
Revuelta I. (2020). 3 Museos. Historia de la cerveza en México. Recuperado el 11 de junio de 2020 de https://www.3museos.com/?eventos=historia-de-la-cerveza-en-mexico#:~:text=Hace%20casi%20quinientos%20a%C3%B1os%2C%20Alfonso,primer%20productor%20de%20cerveza%20en
CIMA. Reporte del mercado de cebada, enero 2020. Disponible en: https://www.cima.aserca.gob.mx/work/models/cima/pdf/cadena/2020/Reporte_mercado_cebada_100120.pdf
Sánchez AR, Martín FM, Palma MS, López PB, Bermejo LLM and Gómez C C. (2015). Indicaciones de diferentes tipos de fibra en distintas patologías. Nutrición Hospitalaria, 31(6):2372-2383.
Aune D, Sen A, Norat T and Riboli E. (2019). Dietary fibre intake and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. European Journal of Nutrition, 1-12.
Agüero JAR, Palacios CL, Hernández MER, Tobías HMR and Cuello CM. (2019). Polisacáridos estructurales y fibra dietética en brotes florales (Tunitas) de Nopalea cochenillifera (L.) Salm-Dick de diferente estadio de desarrollo. Agrociencia, 53(4):605-616.
Dai FJ and Chau CF. (2017). Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis, 25(1):37-42.
Vilcanqui-Pérez F and Vílchez-Perales C. (2017). Fibra dietaria: nuevas definiciones, propiedades funcionales y beneficios para la salud. Revisión. Archivos Latinoamericanos de Nutrición, 67(2):146-156.
Wong J, De Souza R, Kendall C, Emam A and Jenkins D. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3):235–243.
De Arcangelis E and Djurle S, Andersson AAM, Marconi E, Messia MC and Andersson R. (2019). Structure analysis of β-glucan in barley and effects of wheat β-glucanase. Journal of Cereal Science, 85:175–181.
Pizarro CS, Ronco MAM and Gotteland RM. (2014). β-glucanos: ¿qué tipos existen y cuáles son sus beneficios en la salud? Revista Chilena de Nutrición, 41(4):439–446
Kant L, Amrapali, S and Babu BK. (2016). Barley. In Singh M and Upadhyaya HD (ed) Genetic and Genomic Resources for Grain Cereals Improvement, Academic Press, p. 125–157.
Grando S and Macpherson HG. (2005). Food barley: importance, uses and local knowledge. ICARDA, Aleppo, Syria, 121-137.
Baik BK and Ullrich SE. (2008). Barley for food: characteristics, improvement, and renewed interest. Journal of Cereal Science, 48(2):233-242.
Secretaría de Agricultura y Desarrollo Rural. (02 de agosto de 2019). Producción de cerveza en México: una historia para celebrar. Recuperado el 10 de junio de 2020 de https://www.gob.mx/agricultura/articulos/produccion-de-cerveza-en-mexico-una-historia-para-celebrar
Karimi R, Azizi MH and Xu Q. (2019). Effect of different enzymatic extractions on molecular weight distribution, rheological and microstructural properties of barley bran β-glucan. International Journal of Biological Macromolecules, 126:298–309.
Li Z, Dong Y, Xiao X and Zhou X-H. (2019). Mechanism by which β-glucanase improves the quality of fermented barley flour-based food products. Food Chemistry, 311:126026.
Danilova TV, Friebe B, Gill BS, Poland J and Jackson E. (2017). Development of a complete set of wheat–barley group-7 Robertsonian translocation chromosomes conferring an increased content of β-glucan. Theoretical and Applied Genetics, 131(2):377–388.
Zhao Y, Zhou HM, Huang ZH and Zhao RY. (2020). Different Aggregation States of Barley β-Glucan Molecules Affects Their Solution Behavior: A Comparative Analysis. Food Hydrocolloids, 101:105543.
Kim EK, Oh TJ, Kim LK and Cho YM. (2016). Improving effect of the acute administration of dietary fiber-enriched cereals on blood glucose levels and gut hormone secretion. Journal of Korean Medical Science. 31(29):222-230.
Chen H, Nie Q, Xie M, Yao H, Zhang K, Yin J and Nie S. (2019). Protective effects of β-glucan isolated from highland barley on ethanol-induced gastric damage in rats and its benefits to mice gut conditions. Food Research International, 122:157-166.
Fusté N, Guasch M, Guillen P, Anerillas C, Cemeli T, Pedraza N, et al. (2019). Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts. Carbohydrate Polymers, 210:389–398.
Arcidiacono MV, Carrillo-López N, Panizo S, Castro-Grattoni AL, Valcheva P, Ulloa C and Dusso AS. (2019). Barley-ß-glucans reduce systemic inflammation, renal injury and aortic calcification through ADAM17 and neutral-sphingomyelinase2 inhibition. Scientific Reports, 9(1):1-14.
Saravanakumar K, Jeevithan E, Hu X, Chelliah R, Oh DH and Wang M.-H. (2020). Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles conjugated with β-D-glucan from barley. Journal of Photochemistry and Photobiology B: Biology, 203:111728.
Aoe S, Ichinose Y, Kohyama N, Komae K, Takahashi A, Abe D and Yanagisawa T. (2017). Effects of high β-glucan barley on visceral fat obesity in Japanese individuals: A randomized, double-blind study. Nutrition, 42:1–6.
Xiao X, Tan C, Sun X, Zhao Y, Zhang J, Zhu Y and Zhou X. (2019). Effects of fermentation on structural characteristics and in vitro physiological activities of barley β-glucan. Carbohydrate Polymers, 231:115685.x
Zhai H, Gunness P and Gidley MJ. (2020). Barley β-glucan effects on emulsification and in vitro lipolysis of canola oil are modulated by molecular size, mixing method, and emulsifier type. Food Hydrocolloids, 103:105643.
Messia MC, Oriente M, Angelicola M, De Arcangelis E, and Marconi E. (2019). Development of functional couscous enriched in barley β-glucans. Journal of Cereal Science 85:137–142.
Lotfi SS, Koocheki A, Milani E, and Mohebbi M. (2020). Production of high fiber ready-to-eat expanded snack from barley flour and carrot pomace using extrusion cooking technology. Journal of Food Science and Technology, 57:2169–2181.
Gangopadhyay N, O'Shea N, Brunton NP, Gallagher E, Harrison SM and Rai DK. (2019). Fate of beta-glucan, polyphenols and lipophilic compounds in baked crackers fortified with different barley-milled fractions. LWT, 114:108413.
Djurle S, Andersson AAM and Andersson R. (2018). Effects of baking on dietary fibre, with emphasis on β-glucan and resistant starch, in barley breads. Journal of Cereal Science, 79:449–455.
Zhang K, Yang J, Qiao Z, Cao X, Luo Q, Zhao J, Wang F and Zhang W. (2019). Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chemistry, 293:32-40.
Kaur R and Riar CS. (2019). Sensory, rheological and chemical characteristics during storage of set type full fat yoghurt fortified with barley β-glucan. Journal of Food Science and Technology. 57:41–51.