Amaranto, lípidos y su efecto en las dislipidemias

Palabras clave: amaranthus, aceite de amaranto, escualeno, dislipidemia, colesterol

Resumen

El grano de amaranto (Amaranthus) es un pseudocereal con una composición química y cocción similar a cereales como trigo, maíz y arroz, se utiliza para elaborar pan y derivados.  Contiene carbohidratos (75.3–76.8 g/100 g), proteínas (12–19g/100g), lípidos (6.1–8.1 g/100 g), vitaminas hidrosolubles (6.11 g/100 g), vitaminas liposolubles (63.7–129.3 mg/100 g) y minerales (3–3.1 g/100 g). Entre sus lípidos, predominan los ácidos grasos poliinsaturados (41.85 %) y escualeno (52.2 mg/g de aceite). El escualeno, es un terpeno que se encuentra en cantidades importantes en su aceite, tiene capacidad antioxidante e inhibe radicales libres, y junto con la fibra podría mejorar el perfil lipídico en las dislipidemias, sin embargo, su consumo no es habitual. Por lo anterior, el objetivo fue analizar los elementos teóricos del amaranto, para conocer el efecto del consumo del grano y sus lípidos sobre las dislipidemias. Este trabajo fue una investigación de tipo documental, en el que se realizó una búsqueda en bases de datos electrónicas como PubMed y Science Direct. Como resultado de esta investigación, se demostró que en animales de experimentación solo la ingesta del grano de amaranto con un contenido de fibra (3.5–5.0 g/100 g), evitó el incremento de colesterol total en 73 % (200 mg/dL) durante la ingesta de dietas hipercolesterolémicas, debido a que la fibra incrementa su viscosidad en la mucosa intestinal, lo cual evita su absorción. Por otra parte, en dietas enriquecidas en escualeno (1 g/kg), y debido a sus dobles enlaces en su estructura química, neutralizó especies reactivas de oxígeno en colesterol LDL (22.5x105 – 4x105 Unidades Arbitrarias de Fluorescencia) y aumentó el colesterol HDL (0.4-0.6 mM). Por lo tanto, el contenido de fibra y lípidos es eficaz para controlar o prevenir dislipidemias.

Descargas

La descarga de datos todavía no está disponible.

Citas

. D’Amico S, Schoenlechner R. Amaranth: Its Unique Nutritional and Health-Promoting Attributes [Internet]. Gluten-Free Ancient Grains: Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century. Elsevier Ltd; 2017. 131–159 p. Available from: http://dx.doi.org/10.1016/B978-0-08-100866-9/00006-6

. Alvarez-Jubete L, Arendt EK, Gallagher E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol [Internet]. 2010; 21(2):106–13. Available from: http://dx.doi.org/10.1016/j.tifs.2009.10.014

. Pirzadah TB, Malik B. Pseudocereals as super foods of 21st century: Recent technological interventions. J Agric Food Res [Internet]. 2020; 2(May):100052. Available from: https://doi.org/10.1016/j.jafr.2020.100052

. Bressani R. Amaranth. Encycl Food Sci Nutr. 2003; 52(2):2525–31.

. Schröter D, Baldermann S, Schreiner M, Witzel K, Maul R, Rohn S, Neugart S. Natural diversity of hydroxycinnamic acid derivatives, flavonoid glycosides, carotenoids and chlorophylls in leaves of six different amaranth species. Food Chem [Internet]. 2018; 267:376–86. Available from: https://doi.org/10.1016/j.foodchem.2017.11.043

. Escalante Escoffié MC. Rescate y revaloración del cultivo del amaranto. Ciudad de México: Instituto Interamericano de Cooperación para la Agricultura (IICA); 2010. 1–89 p.

. Chmelík Z, Šnejdrlová M, Vrablík M. Amaranth as a potential dietary adjunct of lifestyle modification to improve cardiovascular risk profile [Internet]. Vol. 72, Nutrition Research. Elsevier Inc.; 2019 [cited 2020 Aug 28]. p. 36–45. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0271531719302568

. Soares RA, Mendonça S, De Castro L, Menezes A, Arêas J. Major peptides from Amaranth (Amaranth cruentus) protein inhibit HMG.CoA reductase activity. Int J Mol Sci. 2015; 16:4150–60.

. Vilcacundo R, Martínez-Villaluenga C, Miralles B, Hernández-Ledesma B. Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. J Sci Food Agric. 2019; 99(3):1225–32.

. Pond W, Lehmann J, Elmore R. Feeding value of raw a heated grain amaranth germplasm. Anim Feed Sci Technol. 1991; 33(221–236).

. Palombini SV, Claus T, Maruyama A, Gohara AK, Henrique A, Souza P, Evelázio De Souza N, Vergílio Visentainer J, Terezinha S, Gomes M, Matsushita M. Evaluation of nutritional compounds in new amaranth and quinoa cultivars. Food Sci Technol, Campinas [Internet]. [cited 2020 Aug 24];33(2):339–44. Available from: http://dx.doi.org/10.1590/S0101-20612013005000051

. Gorinstein S, Pawelzik E, Delgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S. Characterisation of pseudocereal and cereal proteins by protein and amino acid analyses. J Sci Food Agric. 2002; 82(8):886–91

.

. Gorinstein S, Jaramillo NO, Medina OJ, Rogriques WA, Tosello GA, Paredes-Lopez O. Evaluation of some cereals, plants and tubers through protein composition. J Protein Chem. 1999;18(6):687–93.

. Nieto C. El cultivo de amaranto (Amaranthus spp) una alternativa agronómica para Ecuador. INIAP. 1990; 52.

. Januszewska-Jóźwiak K, Synowiecki J. Characteristics and suitability of amaranth components in food biotechnology. Biotechnologia. 2008; 3:89–102.

. Silva-Sánchez C, González-Castañeda J, de León-Rodríguez A, Barba de la Rosa A. Functional and rheological properties of amaranth albumins extracted from two Mexican varieties. Plant Foods Hum Nutr. 2004; 4:169–174.

. Tosi EA, Lucero H, Masciarelli R. Dietary fiber obtained from amaranth (Amaranthus cruentus) grain by differential milling. Food Chem. 2001; 73:441–3.

] Wolosik K, Markowska A. Amaranthus cruentus taxonomy, botanical description, and review of its seed chemical composition. Nat Prod Commun. 2019; 14(5).

. Mustafa AF, Seguin P, Gélinas B. Chemical composition, dietary fibre, tannins and minerals of grain amaranth genotypes. Int J Food Sci Nutr. 2011;62(7):750–4.

. Badui Dergal S. Quimica de los alimentos. Cuarta edi. Pearson Educación; 2006.

. Tang Y, Tsao R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res. 2017; 61(7):1–16.

. Luis GM, Rebeca B, Hernández H, Peña V, Guillermo N, López T, Adrián V, Martínez E, Pacheco R. Current and potential uses of Amaranth (Amaranthus spp.). J Negat No Posit Results. 2018; 3(6):423–36.

. Cai YZ, Corke H, Wu HX. Amaranth. Encycl Grain Sci. 2004; 1–10.

. Martinez-Lopez A, Millan-Linares MC, Rodriguez-Martin NM, Millan F, Montserrat-de la Paz S. Nutraceutical value of kiwicha (Amaranthus caudatus L.). J Funct Foods [Internet]. 2020; 65(December):103735. Available from: https://doi.org/10.1016/j.jff.2019.103735

. Özer NK, Azzi A. Effect of vitamin E on the development of nutritional hypercholesterinemia and atherosclerosis. Monatsschr Unfallheilkd Versicherungsmed. 1960; 6:62–72.

. Bruni R, Medici A, Scalia S, Poli F, Muzzoli M, Sacchetti G. Wild Amaranthus cauda Seed Oil , a Nutraceutical Resource from. J Agric Food Chem. 2001; 49:5455–60.

. Lasunción MÁ. Antioxidantes y arteriosclerosis. Madrid; 2008.

. Kraujalis P, Venskutonis PR, Pukalskas A, Kazernavi R. LWT - Food Science and Technology Accelerated solvent extraction of lipids from Amaranthus spp . seeds and characterization of their composition. 2013; 54:528–34.

. Fidalgo Rodríguez JL, Dynarowicz-Latka P, Miñones Conde J. How unsaturated fatty acids and plant stanols affect sterols plasma level and cellular membranes? Review on model studies involving the Langmuir monolayer technique. Chem Phys Lipids. 2020; 232(September).

. Domínguez-Avila AA, González-Aguilar GA. Lipids. In: Postharvest Physiology and Biochemistry of Fruits and Vegetables [Internet]. Elsevier; 2018 [cited 2020 Aug 24]. p. 273–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128132784000130

. FAO, OMS. Norma para aceites vegetales especificados CXS 210 - 1999. Códex Aliment Normas Int los Aliment [Internet]. 2019; Available from: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210s.pdf

. Popa O, Bəbeanu NE, Popa I, Niţə S, Dinu-Pârvu CE. Methods for obtaining and determination of squalene from natural sources. Biomed Res Int. 2015;2015.

. FAO. Capítulo 5 - Elaboración y refinado de aceites comestibles [Internet]. [cited 2020 Oct 17]. Available from: http://www.fao.org/3/v4700s/v4700s09.htm

. Reddy LH, Couvreur P. Squalene: A natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev [Internet]. 2009; 61(15):1412–26. Available from: http://dx.doi.org/10.1016/j.addr.2009.09.005

. Picardo M, Ottaviani M, Camera E, Mastrofrancesco A. Sebaceous gland lipids. Dermatoendocrinol [Internet]. 2009;1(2):68–71. Available from: http://dx.doi.org/10.4161/derm.1.2.8472

. Liu GCK, Ahrens EH, Schreibman PH, Crouse JR. Measurement of squalene in human tissues and plasma: validation and application. J Lipid Res. 1976; 17:38–45.

. Bakes MJ, Nichols PD. Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern australian waters. Comp Biochem Physiol -- Part B Biochem. 1995; 110(1):267–75.

. Treberg JR, Speers-Roesch B. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea? J Exp Biol. 2016;219(5):615–25.

. Lopez S, Bermudez B, Montserrat-De La Paz S, Jaramillo S, Varela LM, Ortega-Gomez A, Abia R, Muriana FJG. Membrane composition and dynamics: A target of bioactive virgin olive oil constituents. Biochim Biophys Acta - Biomembr [Internet]. 2014; 1838(6):1638–56. Available from: http://dx.doi.org/10.1016/j.bbamem.2014.01.007

. Newmark HL. Squalene, olive oil, and cancer risk. Review and hypothesis. Ann N Y Acad Sci. 1999; 889:193–203.

. Czaplicki S, Ogrodowska D, Derewiaka D, Tan´ska M, Tan´ska T, Zadernowski R. Bioactive compounds in unsaponifiable fraction of oils from unconventional sources. 2009; 61:1412–26.

. Rhee E, Kim HC, Kim JH, Lee EY, Kim BJ, Kim EM, Song Y, Lim JH, Kim HJ, Choi S, Moon MK, Na JO, Park K, Oh MS, Han SY, Noh J, Yi KH, Lee S, Hong S, Jeong I. 2018 Guidelines for the management of dyslipidemia Cardiovascular disease in Koreans. Korean J Intern Med [Internet]. 2019; 34(4):723–71. Available from: http://kjim.org/journal/view.php?doi=10.3904/kjim.2019.188

. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem [Internet]. 2015; 97:55–74. Available from: http://dx.doi.org/10.1016/j.ejmech.2015.04.040

. Kelly GS. Squalene and its potential clinical uses. Altern Med Rev. 1999; 4(1):29–36.

. Bruce KD, Byrne CD. The metabolic syndrome: Common origins of a multifactorial disorder. Postgrad Med J. 2009;85(1009):614–21.

. NORMA Oficial Mexicana NOM-037-SSA2-2002, Para la prevención, tratamiento y control de las dislipidemias [Internet]. 2002 [cited 2019 Oct 27]. Available from: http://www.salud.gob.mx/unidades/cdi/nom/037ssa202.html

. OMS. OPS/OMS | Enfermedades crónicas, el peor asesino [Internet]. [cited 2020 Jun 23]. Available from: https://www.paho.org/hq/index.php?option=com_content&view=article&id=7656:2010-enfermedades-cronicas-peor-asesino&Itemid=4327&lang=es

. Meaney E, Vela A, Ramos A, Alemao E, Yin D. Cumplimiento de las metas con reductores del colesterol en pacientes mexicanos. El estudio COMETA México. Gac Med Mex. 2004;140(5):493–501.

. Secretaria de salud. Diagnóstico y tratamiento de dislipidemias (Hipercolesterolemia) en el adulto. Encyclopedia of Conscientiology. 2016. 1–68 p.

. Qureshi A, Lehmann J, Peterson D. Amaranth and Its Oil Inhibit Cholesterol Biosynthesis in 6 week old female chickens. World. 1996 ;(November 1995):1972–8.

. Berger A, Gremaud G, Baumgartner M, Rein D, Monnard I, Kratky E, Geiger W, Burri J, Dionisi F, Allan M, Lambelet P. Cholesterol-lowering properties of Amaranth grain and oil in hamsters. Int J Vitam Nutr Res. 2003;73(1):39–47.

. De Castro LÍA, Soares RAM, Saldiva PHN, Ferrari RA, Miguel AMRO, Almeida CAS, Arêas JAG. Amaranth oil increased fecal excretion of bile acid but had no effect in reducing plasma cholesterol in hamsters. Lipids. 2013; 48(6):609–18.

. Caselato-Sousa VM, Ozaki MR, De Almeida EA, Amaya-Farfan J. Intake of heat-expanded amaranth grain reverses endothelial dysfunction in hypercholesterolemic rabbits. Food Funct. 2014; 5(12):3281–6.

. Moszak M, Zawada A, Juchacz A, Grzymislawski M, Bogdanski P. Comparison of the effect of rapeseed oil or amaranth seed oil supplementation on weight loss, body composition, and changes in the metabolic profile of obese patients following 3-week body mass reduction program: a randomized clinical trial. Lipids Health Dis. 2020; 19.

. Nakamura Y, Tonogai Y, Tsumura Y, Shibata T, Uchiyama M. Effect of dietary squalene on the fecal steroid excretions and the lipid levels of serum and the liver in the rat. Nutr Res. 1997; 17(2):243–2577.

Shin DH, Heo HJ, Lee YJ, Kim HK. Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol diet. Br J Biomed Sci. 2004; 61(1):11–4.

. Gabás-Rivera C, Barranquero C, Martínez-Beamonte R, Navarro MA, Surra JC, Osada J. Dietary squalene increases high density lipoprotein-cholesterol and paraoxonase 1 and decreases oxidative stress in mice. PLoS One. 2014; 9(8).

. Sisti MS, Scilingo A, Añón MC. Effect of the Incorporation of Amaranth (Amaranthus Mantegazzianus) into Fat- and Cholesterol-Rich Diets for Wistar Rats. J Food Sci. 2019;84(11):3075–82.

. Romero-Martínez M, Shamah-Levy T, Cuevas-Nasu L, Gómez-Humarán IM, Gaona-Pineda EB, Gómez-Acosta LM, Rivera-Dommarco JÁ, Hernández-Ávila M. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016. Salud Publica Mex [Internet]. 2016;59(3):299–305. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28902317

. Instituto Nacional de Salud Pública. Encuesta Nacional de Salud y Nutrición: Presentación de resultados [Internet]. Vol. 1, Ensanut. 2018. p. 47. Available from: https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf

. OMS. Cardiovascular diseases (CVDs) [Internet]. 2017 [cited 2021 Apr 18]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

. OMS. Información general sobre la hipertensión en el mundo [Internet]. Ginebra; 2013 [cited 2021 Apr 18]. Available from: www.who.int

. Arreola Peñalosa M, Arriega Dávila J, Pérez Rodríguez G, López Ocaña L, Viviegra Osorio A, Sepúlveda Vildosola A. Diagnóstico y tratamiento de las dislipidemias (hipercolesterolemia). Vol. 67, Instituto Mexicano del Seguro Social. Ciudad de México; 2016.

. L’homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, Legrand-Poels S. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res. 2013; 54(11):2998–3008.

. Micera M, Botto A, Geddo F, Antoniotti S, Bertea CM, Levi R, Gallo MP, Querio G. Squalene : More than a Step toward Sterols. 2020; 1–14.

. Hien HTM, Ha NC, Thom LT, Hong DD. Squalene promotes cholesterol homeostasis in macrophage and hepatocyte cells via activation of liver X receptor (LXR) α and β. Biotechnol Lett. 2017; 39(8):1101–7.

. Geyeregger R, Zeyda M, Stulnig TM. Liver X receptors in cardiovascular and metabolic disease. Cell Mol Life Sci. 2006; 63(5):524–39.

. Soliman GA. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients [Internet]. 2019; 1829–43. Available from: http://dx.doi.org/10.1016/B978-1-4377-0398-6.00086-X

. Cummings JH. Short chain fatty acids in the human colon [Internet]. Vol. 22, Gut. 1981 [cited 2021 Feb 17]. p. 763–79. Available from: https://gut.bmj.com/lookup/doi/10.1136/gut.22.9.763

. Page MA, Tubbs PK. Some Properties of 3-Hydroxy-3-methylglutaryl-Coenzyme A Synthase from Ox Liver. Vol. 173, Biochem. J. 1978.

. Bush RS, Milligan LP. Study of the mechanisms of inhibition of ketogenesis by propionate in bovine liver. Can J Anim Sci [Internet]. 1971 Apr 1 [cited 2021 Feb 17]; 51(1):121–7. Available from: http://www.nrcresearchpress.com/doi/10.4141/cjas71-016

. Gil G, Hegardt FG. Some properties of purified 3-hydroxy-3-methylglutaryl coenzyme A reductase phosphatases from rat liver. Arch Biochem Biophys [Internet]. 1982 Mar [cited 2021 Feb 17]; 214(1):192–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/0003986182900224

. Yegin S, Kopec A, Kitts DD, Zawistowski J. Dietary fiber: a functional food ingredient with physiological benefits. In: Dietary Sugar, Salt and Fat in Human Health [Internet]. Elsevier; 2020 [cited 2021 Feb 19]. p. 531–55. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012816918600024X

. Gallaher DD, Hassel CA, Lee KJ, Gallaher CM. Viscosity and fermentability as attributes of dietary fiber responsible for the hypocholesterolemic effect in hamsters. J Nutr [Internet]. 1993 [cited 2021 Feb 18]; 123(2):244–52. Available from: https://pubmed.ncbi.nlm.nih.gov/8381479/

. Reppas C, Swidan SZ, Tobey SW, Turowski M, Dressman JB. Hydroxypropylmethylcellulose significantly lowers blood cholesterol in mildly hypercholesterolemic human subjects. Eur J Clin Nutr. 2009; 63(1):71–7.

. Dongowski G. Interactions between dietary fibre-rich preparations and glycoconjugated bile acids in vitro. Food Chem. 2007 Jan 1; 104(1):390–7.

. Cornfine C, Hasenkopf K, Eisner P, Schweiggert U. Influence of chemical and physical modification on the bile acid binding capacity of dietary fibre from lupins (Lupinus angustifolius L.). Food Chem [Internet]. 2010 Oct 1 [cited 2021 Feb 18]; 122(3):638–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814610002840

. Zacherl C, Eisner P, Engel KH. In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chem [Internet]. 2011 May 15 [cited 2021 Feb 18]; 126(2):423–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814610014068

. Ghaffarzadegan T, Zhong Y, Fåk Hållenius F, Nyman M. Effects of barley variety, dietary fiber and β-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. J Nutr Biochem [Internet]. 2018 Mar 1 [cited 2021 Feb 18]; 53:104–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0955286317304400

. Xue Z, Gao X, Jia Y, Wang Y, Lu Y, Zhang M, Panichayupakaranant P, Chen H. Structure characterization of high molecular weight soluble dietary fiber from mushroom Lentinula edodes (Berk.) Pegler and its interaction mechanism with pancreatic lipase and bile salts. Int J Biol Macromol. 2020 Jun 15; 153:1281–90. T, Valladares A, Lizán L, Sacristán JA. Adherencia y persistencia terapéutica: causas, consecuencias y estrategias de mejora. Aten. Primaria 2009; 41(6): 342–48.

Publicado
2021-12-05
Cómo citar
Peña Serrano, G., & Ariza Ortega, J. A. (2021). Amaranto, lípidos y su efecto en las dislipidemias. Educación Y Salud Boletín Científico Instituto De Ciencias De La Salud Universidad Autónoma Del Estado De Hidalgo, 10(19), 160-172. https://doi.org/10.29057/icsa.v10i19.6961