Composición y aplicaciones clínicas de especies de chiles (Capsicum spp.) domesticados

Palabras clave: Capsicum, Compuestos bioactivos, Aplicaciones clínicas

Resumen

El género Capsicum es originario de América Latina y se expandió a otros continentes mediante intercambio de especias. Su fruto se utiliza fresco o seco para aportar color, sabor y olor a platillos, ensaladas y salsas. Posee gran relevancia comercial a nivel mundial, siendo los principales países productores China, México y Turquía. Existen cinco especies domesticadas que son: C. baccatum, C. chinense, C. pubescens, C. frutescens y C. annuum. En general, los frutos de Capsicum disponen de gran variedad de tamaños y formas, y de acuerdo a su estado de madurez presentan cambios en las tonalidades, que van del verde a tonos amarillos, rojos y rojos intensos. Los frutos poseen compuestos bioactivos que pueden proveer efectos benéficos en la salud. El objetivo del presente trabajo fue realizar una revisión sobre los compuestos bioactivos de las diferentes especies domesticadas del género Capsicum y sus recientes aplicaciones clínicas. Debido a los componentes bioactivos de las especies de Capsicum, los estudios demuestran efectos benéficos en la prevención y tratamiento sobre enfermedades no transmisibles, efectos antiinflamatorios, control de peso, cardiovasculares, antidiabéticos, gastrointestinales y cancerígenos. Las especies de Capsicum tienen un notable papel en el campo médico debido a su capacidad de modular y modificar diversos procesos a nivel biológico.

Descargas

La descarga de datos todavía no está disponible.

Citas

León, J. Botánica de los cultivos tropicales. Tercera edición. Costa Rica: Ed. Agroamérica; 2000. 522 Pp.

Bosland, P. and Votava, E. Peppers: Vegetable and spice Capsicums. Crop production science in horticulture. Second edition. New York: Ed. CABI; 2012. 230 Pp.

Castañón, G., Latournerie, L., Lesher, J. M., de-la-Cruz, E. y Mendoza, M. Identificación de variables para caracterizar morfológicamente colectas de chile (Capsicum spp.) en Tabasco, México. Universidad y Ciencia. 2010; 26(3): 225-234.

Zhang, J., Yang, R., Chen, R., Li, Y. C., Peng, Y., and Wen, X. Geographical origin discrimination of pepper (Capsicum annuum L.) based on multi-elemental concentrations combined with chemometrics. Food Science and Biotechnology. 2019; 28(6): 1627-1635.

Namesny, A. Pimientos (Segunda edición). Compendios de Horticultura 16. España: Ediciones de horticultura, S.L. Reus; 2006. 254 Pp.

DeWitt, D. and Bosland, P. The complete chili pepper book: A gardener’s guide to choosing, growing, preserving and cooking. USA/ England: Ed. Timber press; 2009. 336 Pp.

Food and agriculture organization of the United Nations. FAOSTAT. Food and agriculture organization of the United Nations Crops; 2018 [En línea]. [Consultado 12 de agosto de 2020] Disponible en: http://www.fao.org/faostat/en/#data/QC

Barbero, G. F., Liazid, A., Azaroual, L., Palma, M., and Barroso, C. G. Capsaicinoid contents in peppers and pepper-related spicy foods. International Journal of Food Properties. 2016; 19(3): 485-493.

Castellón-Martínez, É., Chávez-Servia, J. L., Carrillo-Rodríguez, J. C. y Vera-Guzmán, A. M. Preferencias de consumo de chiles (Capsicum annuum L.) nativos en los valles centrales de Oaxaca, México. Revista Fitotecnia Mexicana. 2012; 35(SPE5): 27-35.

Yánez, P., Balseca, D., Rivadeneira, L. y Larenas, C. Características morfológicas y de concentración de capsaicina en cinco especies nativas del género Capsicum cultivadas en Ecuador. La Granja. Revista de Ciencias de la Vida. 2015; 22(2): 12-32.

Thuphairo, K., Sornchan, P., and Suttisansanee, U. Bioactive compounds, antioxidant activity and inhibition of key enzymes relevant to Alzheimer’s disease from sweet pepper (Capsicum annuum) extracts. Preventive nutrition and food science. 2019; 24(3), 327.

Hernández-Verdugo, S., Porras, F., Pacheco-Olvera, A., López-España, R. G., Villarreal-Romero, M., Parra-Terraza, S. y Osuna-Enciso, T. Caracterización y variación ecográfica de poblaciones de chile (Capsicum annum var. Glabriusculum) silvestre del noroeste de México. Polibotánica. 2012; 33(1): 175-191.

Palacios, S. y García, M. Caracterización morfológica de 93 accesiones de Capsicum spp del banco de germoplasma de la Universidad Nacional de Colombia Sede Palmira. Acta Agronómica. 2008; 57(4): 247-252.

Ramírez, M., Arcos, G. y Méndez, R. Jaguar: cultivar de chile habanero para México. Revista Mexicana de Ciencias Agrícolas. 2018; 9(2): 487-492.

Medina, E. L., Zabaleta, A. L., Rivero, A. E. G., León, J. M., Anthony, J. y Zapata, L. V. Morfometría de frutos y semillas del “ají mochero” Capsicum chinense Jacq. Ciencia & Tecnología Agropecuaria. 2020; 21(3): 1-11.

de-la-Cruz-Lázaro, E., Márquez-Quiroz, C., Osorio-Osorio, R., Preciado-Rangel, P. y Márquez-Hernández, C. Caracterización morfológica in situ de chile silvestre Pico de paloma (Capsicum frutescens) en Tabasco, México. Acta Universitaria. 2017; 27(2): 10-16.

Escalera-Ordaz, A. K., Guillén-Andrade, H., Lara-Chávez, M. B. N., Lemus-Flores, C., Rodríguez-Carpena, J. G. y Valdivia-Bernal, R. Caracterización de variedades cultivadas de Capsicum pubescens en Michoacán, México. Revista Mexicana de Ciencias Agrícolas. 2019; (23): 239-251.

Bae, H., Jayaprakasha, G. K., Crosby, K., Yoo, K. S., Leskovar, D. I., Jifon, J., and Patil, B.S. Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse-grown peppers. Journal of Food Composition and Analysis. 2014; 33(2): 195-202.

Rochín-Wong, C. S., Gámez-Meza, N., Montoya-Ballesteros, L. C. y Medina-Juárez, L. A. Efecto de los procesos de secado y encurtido sobre la capacidad antioxidante de los fitoquímicos del chiltepín (Capsicum annuum L. var. glabriusculum). Revista mexicana de ingeniería química. 2013; 12(2): 227-239.

Carvalho, A. V., de-Andrade-Mattietto, R., de-Oliveira-Rios, A., de-Almeida-Maciel, R., Moresco, K. S., and de-Souza-Oliveira, T. C. Bioactive compounds and antioxidant activity of pepper (Capsicum sp.) genotypes. Journal of Food Science and Technology. 2015; 52(11): 7457-7464.

Gurnani, N., Gupta, M., Darshana, M. D., and Mehta, B. K. Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). Journal of Taibah University of Science. 2016; 10(4): 462-470.

Cervantes-Paz, B., Yahia, E. M., Ornelas-Paz, J. de J., Victoria-Campos, C. I., Ibarra-Junquera, V., Pérez-Martínez, J. D., and Escalante-Minakata, P. Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chemistry. 2014; (146): 188-196.

Rodríguez‐Burruezo, A., González‐Mas, M. D. C., and Nuez, F. Carotenoid composition and vitamin A value in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.), 2 pepper species from the Andean region. Journal of Food Science. 2010; 75(8): 446-453.

Sricharoen, P., Lamaiphan, N., Patthawaro, P., Limchoowong, N., Techawongstien, S., and Chanthai, S. Phytochemicals in Capsicum oleoresin from different varieties of hot chilli peppers with their antidiabetic and antioxidant activities due to some phenolic compounds. Ultrasonics Sonochemistry. 2017; (38): 629-639.

Zimmer, A. R., Leonardi, B., Miron, D., Schapoval, E., de-Oliveira, J. R., and Gosmann, G. Antioxidant and anti-inflammatory properties of Capsicum baccatum: from traditional use to scientific approach. Journal of Ethnopharmacology. 2012; 139(1): 228-233.

Pugliese, A., Loizzo, M. R., Tundis, R., O’Callaghan, Y., Galvin, K., Menichini, F., and O’Brien, N. The effect of domestic processing on the content and bioaccessibility of carotenoids from chili peppers (Capsicum species). Food Chemistry. 2013; 141(3): 2606-2613.

Howard, L. R., Talcott, S. T., Brenes, C. H., and Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. Journal of Agricultural and Food Chemistry. 2000; 48(5): 1713-1720.

Rivas, M. A., Vignale, N. D., Ordóñez, R. M., Zampini, I. C., Alberto, M. R., Sayago, J. E. e Isla, M. I. Nutraceutical properties and toxicity studies of flour obtained from Capsicum pubescens fruits and its comparison with “Locoto” commercial powder. Food and Nutrition Science. 2014; (5): 715-724.

da-Silveira-Agostini-Costa, T., da-Silva-Gomes, I., de-Melo, L. A. M. P., Reifschneider, F. J. B., and da-Costa-Ribeiro, C. S. Carotenoid and total vitamin C content of peppers from selected Brazilian cultivars. Journal of Food Composition and Analysis. 2017; (57): 73-79.

Baas-Espinola, F. M., Castro-Concha, L. A., Vázquez-Flota, F. A., and Miranda-Ham, M. L. Capsaicin synthesis requires in situ phenylalanine and valine formation in in vitro maintained placentas from Capsicum chinense. Molecules. 2016; 21(6): 799.

Giuffrida, D., Dugo, P., Torre, G., Bignardi, C., Cavazza, A., Corradini, C., and Dugo, G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chemistry. 2013; (140): 794-802.

Wang, X., Yu, L., Li, F., Zhang, G., Zhou, W., and Jiang, X. Synthesis of amide derivatives containing capsaicin and their antioxidant and antibacterial activities. Journal of Food Biochemistry. 2019; 43(12): 1-9.

Boiko, Y. A., Kravchenko, I. A., Shandra, A. A., and Boiko, I. A. Extraction, identification and anti-inflammatory activity of carotenoids out of Сapsicum Anuum L. Journal of Herbmed Pharmacology. 2016; 6(1): 10-15.

Alabi, A., Ajayi, A. M., Olooto, W. E., Emegoakor, C., Oladunjoye, O., and Obikoya, Y. Antinociceptive and anti-inflammatory properties of a polyherbal extract of Plumbago zeylinica and Capsicum frutescens in rodents. African Journal of Biomedical Research. 2017; 20(3): 277-285.

Prathoshni, S. M., Anitha, R., and Lakshmi, T. The effect of Capsicum oleoresin on nitric oxide production and nitric oxide synthase gene expression in macrophage cell line. Pharmacognosy Research. 2018; 10(4): 343.

Qiao, G. H., Wenxin, D., Zhigang, X., Sami, R., Khojah, E., and Amanullah, S. Antioxidant and anti-inflammatory capacities of pepper tissues. Italian Journal of Food Science. 2020; 32(2): 265-274.

Della-Valle, A., Dimmito, M. P., Zengin, G., Pieretti, S., Mollica, A., Locatelli, M., ..., and Baloglu, M. C. Exploring the nutraceutical potential of dried pepper Capsicum annuum L. on market from Altino in Abruzzo Region. Antioxidants. 2020; 9(5): 400.

Allemand, A., Leonardi, B. F., Zimmer, A. R., Moreno, S., Romao, P. R. T., and Gosmann, G. Red pepper (Capsicum baccatum) extracts present anti-inflammatory effects in vivo and inhibit the production of TNF-α and NO in vitro. Journal of medicinal food. 2016; 19(8): 759-767.

Liu, L., Ding, C., Tian, M., Yi, D., Wang, J., Zhao, J., ..., and Wang, C. Fermentation improves the potentiality of capsicum in decreasing high-fat diet-induced obesity in C57BL/6 mice by modulating lipid metabolism and hormone response. Food Research International. 2019; 124: 49-60.

Lacatusu, I., Badea, N., Udeanu, D., Coc, L., Pop, A., Negut, C. C., ..., and Meghea, A. Improved anti-obesity effect of herbal active and endogenous lipids co-loaded lipid nanocarriers: Preparation, in vitro and in vivo evaluation. Materials Science and Engineering. 2019; 99: 12-24.

Al-Jumayi, H. A., Elhendy, H. A., and Darwish, A. M. Biological effects of red chili pepper (Capsicum annuum) consumption on high fat diet female albino rats. Pakistan Journal of Biological Sciences: PJBS. 2020; 23(2): 150-158.

Huei, C. S., Azlan, A., Ismail, A., Shafie, N. H., and Sultana, S. Antioxidant and anti-obesity properties of local chilies varieties in Malaysia. Journal of Food Science and Technology. 2020; 57(10): 3677-3687.

Wu, T., Gao, Y., Hao, J., Geng, J., Zhang, J., Yin, J., ..., and Zhang, M. Capsanthin extract prevents obesity, reduces serum TMAO levels and modulates the gut microbiota composition in high-fat-diet induced obese C57BL/6J mice. Food Research International. 2020; 128: 108774.

Joo, J. I., Kim, D. H., Choi, J. W., and Yun, J. W. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. Journal of Proteome Research. 2010; 9(6): 2977-2987.

Zhang, L., Fang, G., Zheng, L., Chen, Z., and Liu, X. Hypocholesterolemic effect of capsaicinoids in rats fed diets with or without cholesterol. Journal of Agricultural and Food Chemistry. 2013; 61(18): 4287-4293.

Qin, Y., Ran, L., Wang, J., Yu, L., Lang, H. D., Wang, X. L., ..., and Zhu, J. D. Capsaicin supplementation improved risk factors of coronary heart disease in individuals with low HDL-C levels. Nutrients. 2017; 9(9): 1037.

Segawa, Y., Hashimoto, H., Maruyama, S., Shintani, M., Ohno, H., Nakai, Y., … and Kurihara, N. Dietary capsaicin-mediated attenuation of hypertension in a rat model of renovascular hypertension. Clinical and Experimental Hypertension. 2019; 42(4): 352-359.

Li, W., Yang, H., and Lu, Y. Capsaicin alleviates lipid metabolism disorder in high beef fat-fed mice. Journal of Functional Foods. 2019; 60: 103444.

Yeon, S. J., Kim, J. H., Cho, W. Y., Kim, S. K., Seo, H. G., and Lee, C. H. In Vitro studies of fermented korean chung-yang hot pepper phenolics as inhibitors of key enzymes relevant to hypertension and diabetes. Foods. 2019; 8(10): 498.

de-Lourdes-Medina‐Contreras, J. M., Mailloux‐Salinas, P., Colado‐Velazquez, J. I., Gómez‐Viquez, N. L. G. V., Velázquez‐Espejel, R., del-Carmen-Susunaga‐Notario, A., and Bravo, G. Topical capsaicin cream with moderate exercise protects against hepatic steatosis, dyslipidemia and increased blood pressure in hypoestrogenic obese rats. Journal of the Science of Food and Agriculture. 2020; 100(7): 3212-3219.

Yang, D., Luo, Z., Ma, S., Wong, W. T., Ma, L., Zhong, J., ..., and Liu, D. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metabolism. 2010; 12(2): 130-141.

Luo, Z., Ma, L., Zhao, Z., He, H., Yang, D., Feng, X., ..., and Liu, D. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Research. 2012; 22(3): 551-564.

Xiong, S., Wang, P., Ma, L., Gao, P., Gong, L., Li, L., ..., and Chen, J. Ameliorating endothelial mitochondrial dysfunction restores coronary function via transient receptor potential vanilloid 1–mediated protein kinase A/uncoupling protein 2 pathway. Hypertension. 2016; 67(2): 451-460.

Song, J. X., Ren, H., Gao, Y. F., Lee, C. Y., Li, S. F., Zhang, F., ..., and Chen, H. Dietary capsaicin improves glucose homeostasis and alters the gut microbiota in obese diabetic ob/ob mice. Frontiers in Physiology. 2017; 8: 602.

Zhang, S., Ma, X., Zhang, L., Sun, H., and Liu, X. Capsaicin reduces blood glucose by increasing insulin levels and glycogen content better than capsiate in streptozotocin-induced diabetic rats. Journal of Agricultural and Food Chemistry. 2017; 65(11): 2323-2330.

Lagisetty, U., Mohammed, H., and Ramaiah, S. Effect of capsaicin on pharmacodynamic and pharmacokinetics of gliclazide in animal models with diabetes. Pharmacognosy Research. 2018; 10: 437-41.

Hui, S., Liu, Y., Chen, M., Wang, X., Lang, H., Zhou, M., ..., and Mi, M. Capsaicin improves glucose tolerance and insulin sensitivity through modulation of the gut microbiota‐bile acid‐FXR axis in type 2 diabetic db/db mice. Molecular Nutrition & Food Research. 2019; 63(23): 1900608.

Kim, H. K., Jeong, J., Kang, E. Y., and Go, G. W. Red Pepper (Capsicum annuum L.) Seed extract improves glycemic control by inhibiting hepatic gluconeogenesis via phosphorylation of FOXO1 and AMPK in obese diabetic db/db mice. Nutrients. 2020; 12(9): 2546.

Sinisgalli, C., Vezza, T., Diez‐Echave, P., Ostuni, A., Faraone, I., Hidalgo‐Garcia, L., ..., and Nogales, A. R. The beneficial effects of red sun‐dried Capsicum annuum L. cv Senise extract with antioxidant properties in experimental obesity are associated with modulation of the intestinal microbiota. Molecular Nutrition & Food Research. 2020; 2000812.

Mendivil, E. J., Sandoval-Rodriguez, A., Meza-Ríos, A., Zuñiga-Ramos, L., Dominguez-Rosales, A., Vazquez-Del-Mercado, M., ..., and Armendariz-Borunda, J. Capsaicin induces a protective effect on gastric mucosa along with decreased expression of inflammatory molecules in a gastritis model. Journal of Functional Foods. 2019; 59: 345-351.

Tayseer, I., Aburjai, T., Abu-Qatouseh, L., AL-Karabieh, N., Ahmed, W., and Al-Samydai, A. In vitro anti Helicobacter pylori activity of capsaicin. J. Pure Appl. Microbiol. 2020; 14(1): 279-286.

Satoh, H., Akiba, Y., and Urushidani, T. Proton pump inhibitors prevent gastric antral ulcers induced by NSAIDs via activation of capsaicin-sensitive afferent nerves in mice. Digestive Diseases and Sciences. 2020; 65(9): 2580-2594.

Montero, R. D., Cortez, D. F. y Pacheco, E. V. Efecto del Capsicum annum L. (pucunucho, ají mono) en úlcera gástrica experimental inducida en. Revista de Gastroenterología del Perú. 2017; 35(2): 141-150.

Adaszek, Ł. U. K. A. S. Z., Gadomska, D., Staniec, M., Gołyński, M., Łyp, P., Ziętek, J., ..., and Winiarczyk, S. Clinical assessment of the anti-cancer activity of the capsaicin-containing habanero pepper extract in dogs–preliminary study. Med. Weter. 2017; 73(7): 404-411.

Dębiak, P., Gadomska, D., Śmiech, A., Ziętek, J., Łyp, P., Łojszczyk-Szczepaniak, A. N. N. A., and Adaszek, Ł. Effectiveness of capsaicin containing dried habanero pepper extract in the treatment of primary hepatic cancer in geriatric dogs. Medycyna Weterynaryjna. 2018; 74(12): 765-771.

Lavorgna, M., Orlo, E., Nugnes, R., Piscitelli, C., Russo, C., and Isidori, M. Capsaicin in hot chili peppers: in vitro evaluation of its antiradical, antiproliferative and apoptotic activities. Plant Foods for Human Nutrition. 2019; 74(2): 164-170.

Hatzidaki, E., Papadimitriou, M., and Papasotiriou, I. Evaluation of the anti-proliferative effects of a green tea and Capsicum powder extract in cancer cell lines. Journal of Cancer Therapy. 2020; 11(2): 44-54.

Hail-Jr, N. and Lotan, R. Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. Journal of the National Cancer Institute. 2002; 94(17): 1281-1292

Zhang, J., Nagasaki, M., Tanaka, Y., and Morikawa, S. Capsaicin inhibits growth of adult T-cell leukemia cells. Leukemia Research. 2003; 27(3): 275-283.

Sarpras, M., Chhapekar, S. S., Ahmad, I., Abraham, S. K., and Ramchiary, N. Analysis of bioactive components in Ghost chili (Capsicum chinense) for antioxidant, genotoxic, and apoptotic effects in mice. Drug and Chemical Toxicology. 2018; 43(2): 182-10.

Publicado
2021-12-05
Cómo citar
Osorio-Barraza, L. M., Manzur-Valdespino, S., Zafra-Rojas, Q. Y., Delgado-Olivares, L., Calderón-Ramos, Z. G., & Cruz Cansino, N. del S. (2021). Composición y aplicaciones clínicas de especies de chiles (Capsicum spp.) domesticados. Educación Y Salud Boletín Científico Instituto De Ciencias De La Salud Universidad Autónoma Del Estado De Hidalgo, 10(19), 249-257. https://doi.org/10.29057/icsa.v10i19.7183

Artículos más leídos del mismo autor/a