Efecto protector órgano selectivo de extractos de Psidium guajava L. contra el daño oxidativo en ratas Wistar obesas.
Resumen
Antecedentes: Durante la obesidad hay un aumento del estrés oxidativo que resulta en el desarrollo de diferentes enfermedades, por lo que los antioxidantes se pueden utilizar para prevenir el daño oxidativo. El objetivo de este estudio fue analizar el efecto de los antioxidantes del extracto de guayaba sobre la reducción del daño oxidativo en diferentes órganos de ratas obesas. Métodos: Se realizaron dos extracciones para obtener el extracto de guayaba (EG), la primera con metanol y la segunda con acetona, ambas fueron mezcladas y se analizó la actividad y el contenido antioxidantes, el EG se concentró y se utilizó en ratas macho Wistar obesas. Tres grupos de 8 animales cada uno se formaron y alimentaron con una dieta normal (Ct), una dieta alta en grasas (grupo AG) y una dieta alta en grasas enriquecido con extracto de fruta de guayaba (AG+EG) durante 4 meses. Resultados: La determinación de ácido fenólico y ácido ascórbico del EG, mostró un alto contenido de antioxidantes (3323.0±23.3 mg de GAE/100g bs y 2508.0±143.8 mg de AAE/100g bs, respectivamente), al igual que actividad antioxidante determinada por ABTS•+ y DPPH• (17500.0±888.1 μmol TE/100g bs y 27804.0±94.0 μmol TE/100g bs, respectivamente). Por otro lado, la dieta alta en grasa produjo un incremento en la peroxidación lipídica en hígado y cerebro (3.40±1.05 y 3.99±1.49 nmol MDA/ml, respectivamente). El enriquecimiento de esta dieta con EG, redujo los niveles del daño a los lípidos tanto en el hígado y como el corazón (1.94±0.67 y 2.16±1.21 nmol MDA/ml, respectivamente). Mientras que el cerebro se mantuvo con altos niveles de peroxidación lipídica. Conclusión: Los resultados muestran que el extracto de guayaba tiene una acción de protección selectiva contra el daño oxidativo y su uso como un efecto potencial para prevenir el desarrollo de enfermedades no transmisibles asociadas con la obesidad.
Descargas
Citas
Smith KB, Smith MS. Obesity statistics. Prim Care. 2016. 43(1):121-135.
Guh DP, Zhang W, Bansback N, Amaris Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BCM Public Health. 2009. 9(88):1-20.
Hanson RL, Imperatore G, Bennett PH, Knowler W C. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes. 2002. 51(10):3120-3127.
Reynolds SL, Saito Y, Crimmins EM. The Impact of obesity on active life expectancy in older American men and women. Gerontologist. 2005. 45(4):438–444.
Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013. 7(5):e330-41.
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012. 5(1):9-19.
Ogura S, Shimosawa T. Oxidative stress and organ damages. Curr Hypertens Rep. 2014. 16(452):1-5.
Patel P, Ellis K, Sunkara R, Shackelford L, Ogutu Simon, Walker Ll, Herring J, Verghese M. Development of a functional food product using guavas. Food Nut Sci. 2016. 7:927-937.
Bontempo P, Doto A, Miceli M, Mita L, Benedetti R, Nebbioso A, Veglione M, Rigano D, Cioffi M, Sica V, Molinari AM, Altucci L. Psidium guajava L. anti-neoplastic effects: induction of apoptosis and cell differentiation. Cell Prolif. 2012. 45(1):22-31.
Ironi EA, Agboola SO, Oboh G, Boligon AA, Athayde ML, Shode FO. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro. J Intercul Ethnopharmacol. 2016. 5(2):122-130.
Musdja MY, Mahendra F, Musir A. Anti-hyperglycemic effect and glucose tolerance of guajava (Psidium guajava L.) leaf ethanol extract in diabetic rats. IOP Conf. Series: Earth and Environmental Science. 2017. 101 (2017) 012006.
Jayachandran M, Vinayagam R, Ambati RR, Xu B, Chung SSM. Guava leaf extract diminishes hyperglycemia and oxidative stress, prevents β-cell death, inhibits inflammation, and regulates NF-kB signalling pathway in STZ induced diabetic rats. Biomed Res Int. 2018. 18(2018):4601649.
Saura-Calixto F, Serrano J, Goñi I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007. 101(2):492-501.
Stintzing FC, Herbach KM, Mosshammer M R, Carle R. Yi W, Sellapan S, Akoh CC, Bunch R, Felker P. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem. 2005. 53(2):442-451.
Dürüst N, Sumengen D, Dürüst Y. Ascorbic acid and element contents of foods of Trabzon (Turkey). J Agric Food Chem. 1997. 45: 2085–2087.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999. 26(9-10):1231-1237.
Morales FJ, Jimenez-Perez S. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. J Agric Food Chem. 2001. 72:119–125.
kumar A., Kumarchandra R., Rai R., Rao B. S. S., Radiomodulatory Role of Psidium guajava Leaf Extracts against X-ray Induced Genotoxicity, Oxidative stress and Apoptosis in albino Wistar Rat Model. Journal of Applied Pharmaceutical Science. 2016. 6(3):2016.60310.
Baños-Gómez, R., Cruz-Cansino, N.S., Suarez-Diéguez, T., Valadez-Vega, C., Ramírez-Moreno, E., Alanís-García, E., Ariza-Ortega, J.A., Manríquez-Torres, J.J., Zamora-Romo, E., Delgado-Olivares, L. Undernutrition in the parental and first generation provokes an organ-specific response to oxidative stress on neonates of second filial generation of Wistar rats. J Anim Physiol Anim Nutr. 2017. 11(2):267-274.
Vasco C, Ruales J, Kamal-Eldin A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008. 111:816–823.
Reddy CVK, Sreeramulu D, Raghunath M. Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Res Int. 2019. 43:285-288.
Mesquita J, Patto C, Silveira S, Borges A, Ribeiro A. Evaluation of the protective effect of guava fruits and leaves on oxidative stress. Acta Scientiarum. Biol Sci. 2014. 36(1):35-40.
Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel C L. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes. 2012. 61(8):2074–2083.
Grattagliano I, Palmieri VO, Portincasa P, Moschetta A, Palasciano G. Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. J Nutr Biochem. 2008. 19(8):491-504.
Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, Jeandidier N, Maillard E, Marchioni E, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab. 2016. 13:15.
Wang X, Michaelis EK. Selective Neuronal Vulnerability to Oxidative stress in the brain. Front Aging Neurosci. 2010. 2(12):1-13.
Fenkci V, Fenkci S, Yilmazer M, Serteser M. Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. Fertil Steril. 2003. 80(1):123-127.
Mangge H, Becker K, Dietmar D, Gostner JM. Antioxidants, inflammation and cardiovascular disease. World J Cardiol. 2014. 6(6):462-477.
Pellegrino D. Antioxidants and Cardiovascular Risk Factors. Diseases. 2016. 4:11.
Chess DJ, Khairallah RJ, O'Shea KM, Xu W, Stanley WC. A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload. Am J Physiol Heart Circ Physiol. 2009. 297(5):H1585-93.
Mohamadin AM, Elberry AA, Mariee AD, Morsy GM, Al-Abbasi FA. Lycopene attenuates oxidative stress and heart lysosomal damage in isoproterenol inducedcardiotoxicity in rats: A biochemical study. Pathophysiology. 2012. 19(2):121-30.
Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015. 16(11):26087-124.
Amiri M. Oxidative stress and free radicals in liver and kidney diseases; an updated short-review. J Nephropathol. 2018. 7(3):127-131.
Yoshitomi H, Guo X, Liu T, Gao M. Guava leaf extracts alleviate fatty liver via expression of adiponectin receptors in SHRP.Z-Leprfa/lzm rats. Nutr Metab. 2012. 9:13.
Peng J, Yue C, Qiu K, Chen J, Aller MA; Ko KS, Yang H. 2013. Protective effects of guava pulp on cholestatic liver injury. ISRN Hepatol. 2013. 17(2013):601071.
Jiao Y, Zhang M, Wang S, Yan C. Consumption of guava may have beneficial effects in type 2 diabetes: A bioactive perspective. Int J Biol Macromol. 2017. 101:543-552.
Yamashiro S, Noguchi K, Matsuzaki T. Cardioprotective effects of extracts from Psidium guajava L. and Limonium wrightii, Okinawan medicinal plants, against ischemia-reperfusion injury in perfused rat hearts. Pharmacology. 2003. 67:128-123.
Uttara B, Singh AV, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009. 7(1):65–74.
Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001. 40(8):959-975.