Sorption of NH4+ and NH3 in a zeolitic tuff

Keywords: Sorption, Ammonium, Ammonia, Clinoptilolite, Isotherm

Abstract

In the present research work, a zeolitic tuff consisting mainly of clinoptilolite (66.9%) has been used to carry out sorption experiments of NH4+ in aqueous solutions at 25 °C, and NH3 in the gas phase at 40 °C. Prior to sorption, the tuff has been modified to its potassium and calcium form, respectively. The maximum experimental sorption of NH4+ in the natural tuff was 0.1342 meq/g, in the potassium tuff 0.1850 meq/g, and in the calcium tuff 0.1793 meq/g. The experimental data on NH4+ sorption in natural tuff fit the Freundlich isotherm, while for potassium and calcium tuff they fit the Langmuir isotherm. The maximum experimental amount of NH3 retained for the natural tuff was 2.5190 mmol/g, for the potassium tuff it was 2.1196 mmol/g, and for the calcium tuff 2.4842 mmol/g, in this case, the adsorption model that best fit the experimental data was the Freundlich isotherm.

Downloads

Download data is not yet available.

References

Abdelwahab, O., & Thabet, W. M. (2023). Natural zeolites and zeolite composites for heavy metal removal from contaminated water and their applications in aquaculture systems: a review. The Egyptian Journal of Aquatic Research 49, 431-443.

Adam, M. R., Othman, M. H. D., Hubadillah, S. K., Abd Aziz, M. H., & Jamalludin, M. R. (2023). Application of natural zeolite clinoptilolite for the removal of ammonia in wastewater. Materials Today: Proceedings. 1-6.

Alietti, A. (1972). Polymorphism and crystal-chemistry of heulandites and clinoptilolites. American Mineralogist: Journal of Earth and Planetary Materials 57(9-10), 1448-1462.

American Mineralogist Crystal Structure Data Base. (2023). database_code_amcsd 0001304. http://rruff.geo.arizona.edu/AMS/ amcsd.php

Armbruster, T. (1993). Dehydration mechanism of clinoptilolite and heulandite: Single-crystal X-ray study of Na-poor, Ca-, K-, Mg-rich clinoptilolite at 100 K. American Mineralogist 78, 260-264.

Boles JR. (1972). Composition, optical properties, cell dimensions, and thermal stability of some heulandite group zeolites. American Mineralogist: Journal of Earth and Planetary Materials 57(9-10), 1463-1493.

Breck, D.W. (1984). Zeolite molecular sieves: structure, chemistry, and use. Robert E. Krieger Publishing Company. United States of America.

Cataldo, E., Salvi, L., Paoli, F., Fucile, M., Masciandaro, G., Manzi, D., Masini, C.M., & Mattii, G. B. (2021). Application of zeolites in agriculture and other potential uses: a review. Agronomy 11(8), 1547.

Chipera, S. J., Bish, D. L. (1995). Multireflection RIR and intensity normalizations for quantitative analyses: Applications to feldspars and zeolites. Powder Diffraction 10(1), 47-55.

Christensen, R. (1996). Analysis of variance, design, and regression: applied statistical methods. Chapman & Hall CRC press, Boca ratón Fl.

Cruz-Sánchez, M., Cázares-Duran, J., Reyes-Salas, M., & Ángeles-García, S. (2018). Cinética de sorción de amonio en una toba zeolitizada. Tópicos de Investigación en Ciencias de la Tierra y Materiales 5(5), 90-97.

Dehmani, Y., Mohammed, B. B., Oukhrib, R., Dehbi, A., Lamhasni, T., Brahmi, Y., El-Kordy, A., Franco, D.S.P., Georgin, G., Lima, E.C., Alrashdi, A.A., Tijani, N., & Abouarnadasse, S. (2024). Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review. Arabian Journal of Chemistry 17, 105474.

Downs, R. T., & Hall-Wallace, M., (2003). The American Mineralogist crystal structure database. American Mineralogist 88(1), 247-250.

Duc, M., Gaboriaud, F., & Thomas, F., (2005). Sensitivity of the acid–base properties of clays to the methods of preparation and measurement: 1. Literature review. Journal of Colloid and Interface Science 289(1), 139-147.

Edwards, T. M., Puglis, H. J., Kent, D. B., Durán, J. L., Bradshaw, L. M., & Farag, A. M. (2023). Ammonia and aquatic ecosystems: a review of global sources, biogeochemical cycling, and effects on fish. Science of the Total Environment 907, 167911.

Egyir, M., Luyima, D., Park, S. J., Lee, K. S., & Oh, T. K. (2022). Volatilizations of ammonia from the soils amended with modified and nitrogen-enriched biochars. Science of the Total Environment 835, 155453.

Erdoğan, B., & Ergürhan, O. (2024). Natural and pretreated Gördes clinoptilolite for ammonia removal: effect of the exchangeable cations (Na+, K+, Ca2+ and Mg2+). Clay Minerals 59(1), 39-49.

Ferreira, J. G., Andersen, J. H., Borja, A., Bricker, S. B., Camp, J., Da Silva, M. C., Garcés, E., Heiskanen, A.S., Humborg, Ch, Ignatiades, L., Lancelot, Ch., Menesguen, A., Tett, P., Hoepffner, N., & Claussen, U. (2011). Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 93(2), 117-131.

Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie 57(1), 385-470.

Freundlich, H., & Heller, W. (1939). The adsorption of cis-and trans-azobenzene. Journal of the American Chemical society 61(8), 2228-2230.

Gillingham, M. D., Gomes, R. L., Ferrari, R., & West, H. M. (2022). Sorption, separation and recycling of ammonium in agricultural soils: a viable application for magnetic biochar?. Science of the Total Environment 812, 151440.

Gottardi, G., & Galli, E. (1985). Natural zeolites. Springer-Verlag, Germany.

Guida, S., Potter, C., Jefferson, B., & Soares, A. (2020). Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process. Scientific reports 10(1), 12426.

Gupta, V. K., Sadegh, H., Yari, M., Shahryari, G. R., Maazinejad, B., & Chahardori, M. (2015). Removal of ammonium ions from wastewater: a short review in development of efficient methods. Global J. Environ. Sci. Manage. 1(2), 149-158.

Han, B., Butterly, C., Zhang, W., He, J. Z., & Chen, D. (2021). Adsorbent materials for ammonium and ammonia removal: a review. Journal of Cleaner Production 283, 124611.

Hillier, S. (2000). Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay minerals 35(1), 291-302.

Hubbard, C. R., & Snyder, R. L. (1988). RIR-measurement and use in quantitative XRD. Powder Diffraction 3(2), 74-77.

Kannan, A. D., & Parameswaran, P. (2021). Ammonia adsorption and recovery from swine wastewater permeate using naturally occurring clinoptilolite. Journal of Water Process Engineering 43, 102234.

Lang, Q., Lu, P., Yang, X., & Velchev, V. (2024). Zeolites for the environment. Green Carbon 2, 12-32.

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society 40(9), 1361-1403.

Lasisi, A. A., & Akinremi, O. O. (2020). Kinetics and thermodynamics of urea hydrolysis in the presence of urease and nitrification inhibitors. Canadian Journal of Soil Science 101(2), 192-202.

Le Bas M.J., & Streckeisen A.L. (1991). The IUGS systematics of igneous rocks. Journal of the Geological Society 148(5), 825-833.

Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefevre, A., & Pinay, G. (2019). Eutrophication: a new wine in an old bottle?. Science of the total environment 651, 1-11.

Li, X., Lin, C., Wang, Y., Zhao, M., & Hou, Y. (2010). Clinoptilolite adsorption capability of ammonia in pig farm. Procedia Environmental Sciences 2, 1598-1612.

Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9(1), 181-192.

Loewenstein, W. (1954). The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist 39 (1), 92-96.

Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity, 3rd Ed. Chapman-Hall, Great Britain.

Madrini, B., Shibusawa, S., Kojima, Y., & Hosaka, S. (2016). Effect of natural zeolite (clinoptilolite) on ammonia emissions of leftover food-rice hulls composting at the initial stage of the thermophilic process. Journal of Agricultural Meteorology 72(1), 12-19.

MATCH! ®. Phase identification from powder diffraction. Crystal Impact 2011; V1.11j

Momma K, & Izumi F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography 44(6), 1272-1276.

Mumpton, F. A. (1960). Clinoptilolite redefined. American Mineralogist: Journal of Earth and Planetary Materials 45(3-4), 351-369.

Muscarella, S. M., Badalucco, L., Cano, B., Laudicina, V. A., & Mannina, G. (2021). Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite. Bioresource Technology 341, 125812.

Organización de las Naciones Unidas. (2023). Informe de los Objetivos de Desarrollo Sostenible: Edición especial 2023. https://www.un.org/sustainabledevelopment/es/water-and-sanitation/

Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology 1, 100032.

Salim, N. A. A., Puteh, M. H., Khamidun, M. H., Fulazzaky, M. A., Abdullah, N. H., Yusoff, A. R. M., Zaini, M.A.A., Ahmad, N., Lazim, Z.M., & Nuid, M. (2021). Interpretation of isotherm models for adsorption of ammonium onto granular activated carbon. Biointerface Res. Appl. Chem. 11(2), 9227-9241.

Senila, M., & Cadar, O. (2024). Modification of natural zeolites and their applications for heavy metal removal from polluted environments: challenges, recent advances, and perspectives. Heliyon 10, e25303.

Smyth, J. R., Spaid, A. T., & Bish, D. L. (1990). Crystal structures of a natural and a Cs-exchanged clinoptilolite. American Mineralogist 75(5-6), 522-528.

Statista. (2023). Consumption of nitrogenous fertilizers worldwide in 2021, by product. https://www.statista.com/statistics/1288255/global-consumption-of-nitrogen-fertilizer-by-product/

Takeno, N. (2005). Atlas of Eh-pH diagrams: intercomparison of thermodynamic data bases. Geological Survey of Japan Open file report 419.

Velarde, L., Nabavi, M. S., Escalera, E., Antti, M. L., & Akhtar, F. (2023). Adsorption of heavy metals on natural zeolites: a review. Chemosphere 328, 138508.

Wani, K. S., & Mir, B. A. (2020). Microbial geo-technology in ground improvement techniques: a comprehensive review. Innovative Infrastructure Solutions 5(3), 82.

Wang, Y., Sun, Y., Chen, H., Wu, Q., & Chi, D. (2021). Assessing the performance of clinoptilolite for controlling and releasing ammonium in agricultural applications. Energy Reports 7, 887-895.

Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., & Song, H. (2018). XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences 3(1), 16-29.

Published
2024-10-05
How to Cite
Cruz-Sánchez, M., Galván-Gutiérrez, M. de los Ángeles, Alcaraz-Cienfuegos, J., & Salcedo-Luna, M. C. (2024). Sorption of NH4+ and NH3 in a zeolitic tuff. Tópicos De Investigación En Ciencias De La Tierra Y Materiales, 11(11), 89-100. https://doi.org/10.29057/aactm.v11i11.13280