Detección de ansiedad mediante minería de texto en la era de redes sociales: Revisión bibliográfica

Palabras clave: Ansiedad, minería de texto, redes sociales, aprendizaje automático

Resumen

Los trastornos mentales son cada vez más comunes, principalmente la ansiedad. Este trastorno, al no ser detectado a tiempo, puede volverse algo grave llevando a extremos como el suicidio. Sin embargo, dado que varias personas que lo padecen optan por la interacción en línea, existe la posibilidad de recurrir a la minería de texto enfocada a redes sociales. En este sentido, con el presente trabajo se buscó revisar la bibliografía que reporte estudios empleando minería de texto para determinar los usuarios que padecían de ansiedad mediante sus publicaciones o comentarios en sus redes sociales. La revisión se organizó a partir de las fases de minería de texto; es decir, recopilación de datos, preparación o preprocesamiento y clasificación. Entre los aspectos a resaltar están (i) la tendencia a utilizar una red social para obtener datos, especialmente Twitter; (ii) la relevancia de la limpieza de datos, aplicando técnicas como lemmatization; (iii) los algoritmos más destacados en la detección de ansiedad, como Naive Bayes, regresión logística, SVM y random forest. Más allá de los aportes de los trabajos revisados, se puede notar que persiste la necesidad de desarrollar más modelos que detecten el trastorno de interés.

Descargas

La descarga de datos todavía no está disponible.

Citas

Moitra M. et al. The global gap in treatment coverage for major depressive disorder in 84 countries from 2000–2019: A systematic review and Bayesian meta-regression analysis. PLoS Med. 2022; 19(2), doi: 10.1371/JOURNAL.PMED.1003901.

Muhammad A. et al., “Classification of Anxiety Disorders using Machine Learning Methods: A Literature Review,” Insights Biomed Res. 2020; 4(1). doi: 10.36959/584/455.

Chang M. Y. and Tseng C. Y. Detecting Social Anxiety with Online Social Network Data. In Proceedings - IEEE International Conference on Mobile Data Management. 2020; vol. 2020-June: 333–336. doi: 10.1109/MDM48529.2020.00073.

O’Day E. B. and Heimberg R. G. Social media use, social anxiety, and loneliness: A systematic review. Computers in Human Behavior Reports. 2021; 3. doi: 10.1016/j.chbr.2021.100070.

Romano M., Moscovitch D. A., Ma R., and Huppert J. D. Social problem solving in social anxiety disorder. J Anxiety Disord. 2019; 68. doi: 10.1016/j.janxdis.2019.102152.

Budiyanto S., Sihombing H. C., and Fajar Rahayu I. M. Depression and anxiety detection through the Closed-Loop method using DASS-21. Telkomnika (Telecommunication Computing Electronics and Control). 2019; 17(4). doi: 10.12928/TELKOMNIKA.v17i4.12619.

Sapountzi A. and Psannis K. E. Social Networking Data Analysis Tools & Challenges. Future Generation Computer Systems. 2016; 86: 893-913. doi: 10.1016/j.future.2016.10.019.

Tandel S. S., Jamadar A., and Dudugu S. A Survey on Text Mining Techniques. In 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). 2019: 1022–1026. doi: 10.1109/ICACCS.2019.8728547.

Muhammad A. et al. Classification of Anxiety Disorders using Machine Learning Methods: A Literature Review. Insights Biomed Res. 2020; 4(1). doi: 10.36959/584/455.

Chang M. Y. and Tseng C. Y. Detecting Social Anxiety with Online Social Network Data. In Proceedings - IEEE International Conference on Mobile Data Management. 2020: 333–336. doi: 10.1109/MDM48529.2020.00073.

Avila D., Altamirano A., Avila J., and Guerrero G. Anxiety detection using the AMAS-C test and feeling analysis on the Facebook social network. In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). 2020. doi: 10.23919/CISTI49556.2020.9141104.

Gupta P. and Kaushik B. Suicidal Tendency on Social Media: A Case Study. In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). 2019. doi: 10.1109/COMITCon.2019.8862236.

Zhao Y. et al. Assessing Mental Health Signals among Sexual and Gender Minorities using Twitter Data. In Proceedings - 2018 IEEE International Conference on Healthcare Informatics Workshops, ICHI-W. 2018: 51–52. doi: 10.1109/ICHI-W.2018.00015.

Wang Y., Zhao Y., Bian J., and Zhang R. Detecting Signals of Associations between Dietary Supplement Use and Mental Disorders from Twitter. In Proceedings - 2018 IEEE International Conference on Healthcare Informatics Workshops, ICHI-W. 2018: 53–54. doi: 10.1109/ICHI-W.2018.00016.

Larsen M. E., Boonstra T. W., Batterham P. J., O’Dea B., Paris C., and Christensen H.. We Feel: Mapping Emotion on Twitter. IEEE J Biomed Health Inform. 2015; 19(4): 1246–1252. doi: 10.1109/JBHI.2015.2403839.

Gruda D. and Hasan S. Feeling Anxious? Perceiving Anxiety in Tweets using Machine Learning. Computers in Human Behavior. 2019; 98: 245–255. doi: doi: 10.1016/j.chb.2019.04.020.

Tariq S. et al. A Novel Co-Training-Based Approach for the Classification of Mental Illnesses Using Social Media Posts. IEEE Access. 2019; 7: 166165–166172. doi: 10.1109/ACCESS.2019.2953087.

Ta N., Li K., Yang Y., Jiao F., Tang Z., and Li G. Evaluating Public Anxiety for Topic-Based Communities in Social Networks. IEEE Trans Knowl Data Eng. 2022; 34(3): 1191–1205, Mar. 2022, doi: 10.1109/TKDE.2020.2989759.

Chen Y., Zhou H., Zhou Y., and Zhou F. Prevalence of self-reported depression and anxiety among pediatric medical staff members during the COVID-19 outbreak in Guiyang, China. Psychiatry Res. 2020; 288: 113005. doi: 10.1016/J.PSYCHRES.2020.113005.

Alasadi S.A. and Bhaya W. S. Review of Data Preprocessing Techniques in Data Mining. Journal of Engineering and Applied Sciences. 2017; 12(16): 4102-4107.

Pradana A. W. and Hayaty M. The Effect of Stemming and Removal of Stopwords on the Accuracy of Sentiment Analysis on Indonesian-language Texts. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. 2019; 4(4): 375–380. doi: 10.22219/kinetik.v4i4.912.

Akhmetov I. et al. Highly Language-Independent Word Lemmatization Using a Machine-Learning Classifier. Computación y Sistemas. 2020; 24(3): 1353–1364, 2020. doi: 10.13053/CYS-24-3-3775.

Yogish D., Manjunath T. N., and Hegadi R. S. Review on Natural Language Processing Trends and Techniques Using NLTK. In Communications in Computer and Information Science. 2019; 1037: 589–606. doi: 10.1007/978-981-13-9187-3_53.

Tadesse M. M., Lin H., Xu B., and Yang L. Detection of depression-related posts in reddit social media forum. IEEE Access. 2019; 7: 44883–44893, 2019, doi: 10.1109/ACCESS.2019.2909180.

Meshram S., Babu R., and Adhikari J. Detecting Psychological Stress using Machine Learning over Social Media Interaction. In International Conference on Communication and Electronics Systems (ICCES). 2020. doi: 10.1109/ICCES48766.2020.9137931.

Yang J. and Zhang Y. NCRF++: An Open-source Neural Sequence Labeling Toolkit. ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of System Demonstrations. 2018: 74–79. doi: 10.48550/arxiv.1806.05626.

Tyshchenko Y. Depression and anxiety detection from blog posts data. University of Tartu, Institute of Computer ScienceComputer Science Curriculum, Tesis de Maestría. 2018.

Ma L., Wang Z., and Zhang Y. Extracting depression symptoms from social networks and web blogs via text mining. In Lecture Notes in Computer Science. 2017; 10330: 325–330. doi: 10.1007/978-3-319-59575-7_29.

Islam M. R., Kabir M. A., Ahmed A., Kamal A. R. M., Wang H., and Ulhaq A. Depression detection from social network data using machine learning techniques. Health Inf Sci Syst. 2018; 6(1). doi: 10.1007/s13755-018-0046-0.

Kadhim A. I. Survey on supervised machine learning techniques for automatic text classification. Artif Intell Rev. 2019; 52(1): 273–292. doi: 10.1007/s10462-018-09677-1.

Thangaraj M. and Sivakami M. Text classification techniques: A literature review. Interdisciplinary Journal of Information, Knowledge, and Management. 2018; 13: 117–135, 2018, doi: 10.28945/4066.

Shen J. H. and Rudzicz F. Detecting anxiety on Reddit. In IEEE Students Conference on Engineering and Systems (SCES). 2019: 58–65. doi: 10.18653/v1/W17-3107.

Hao J. and Ho T. K. Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language. Journal of Educational and Behavioral Statistics. SAGE Publications Inc. 2019; 44(3): 348–361. doi: 10.3102/1076998619832248.

Swati J., Narayan Suraj P., Rupesh K. D., Utkarsh B., Nalini M., and Varun K. A Machine Learning based Depression Analysis and Suicidal Ideation Detection System using Questionnaires and Twitter. In IEEE Students Conference on Engineering and Systems (SCES). 2019. doi: 10.1109/SCES46477.2019.8977211.

Chen J., Zhao F., Sun Y., and Yin Y. Improved XGBoost model based on genetic algorithm. International Journal of Computer Applications in Technology. 2020; 62(3): 240–245, 2020, doi: 10.1504/IJCAT.2020.106571.

Palattao C. A. v., Solano G. A., Tee C. A., and Tee M. L. Determining factors contributing to the psychological impact of the COVID-19 Pandemic using machine learning. In 3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC. 2021: 219–224. doi: 10.1109/ICAIIC51459.2021.9415276.

Chadha A. and Kaushik B. A Survey on Prediction of Suicidal Ideation Using Machine and Ensemble Learning. Computer Journal. 2021; 64(11): 1617–1632. doi: 10.1093/comjnl/bxz120.

Priya A., Garg S., and Tigga N. P. Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms. In Procedia Computer Science. 2020; 167: 1258–1267. doi: 10.1016/j.procs.2020.03.442.

Sau A. and Bhakta I. Predicting anxiety and depression in elderly patients using machine learning technology. Healthc Technol Lett. 2017; 4(6): 238–243, 2017, doi: 10.1049/htl.2016.0096.

Sau A. and Bhakta I. Screening of anxiety and depression among the seafarers using machine learning technology. Inform Med Unlocked. 2018; 16. doi: 10.1016/j.imu.2018.12.004.

Kumar P., Garg S., and Garg A. Assessment of Anxiety, Depression and Stress using Machine Learning Models. In Procedia Computer Science. 2020; 171: 1989–1998. doi: 10.1016/j.procs.2020.04.213.

Publicado
2023-07-05
Cómo citar
Torres, V., & Erazo, O. (2023). Detección de ansiedad mediante minería de texto en la era de redes sociales: Revisión bibliográfica. Ciencia Huasteca Boletín Científico De La Escuela Superior De Huejutla, 11(22), 6-14. https://doi.org/10.29057/esh.v11i22.10879