Implementación de un sistema telemático para monitorear y controlar invernaderos en un campus universitario, optimizando la agricultura sostenible

Palabras clave: Gestión Agrícola, Sistema Telemático, Invernaderos Universitarios, Integración exitosa

Resumen

El reconocimiento actual de la importancia de la agricultura como pilar fundamental de la seguridad alimentaria mundial, junto con la necesidad imperante de abordar los desafíos ambientales, ha destacado la urgencia de adoptar prácticas agrícolas sostenibles. En este contexto, la implementación de sistemas innovadores que mejoren la eficiencia y la gestión en la agricultura se vuelve crucial. En línea con esta necesidad, el presente trabajo se centra en el desarrollo de un sistema telemático para el monitoreo y control avanzado de invernaderos. Se identificaron requisitos clave de monitoreo ambiental y se diseñó una red telemática con una interfaz de usuario intuitiva. A través de un enfoque experimental, utilizando métodos cualitativos y cuantitativos, se llevó a cabo un caso de trabajo en un campus universitario. Los resultados preliminares destacaron una integración exitosa del sistema, aunque se reconoció la necesidad de validación adicional. En última instancia, esta investigación resalta la eficacia del sistema telemático propuesto, subrayando la importancia de los requisitos identificados y la efectividad de la infraestructura de red utilizada.

Descargas

La descarga de datos todavía no está disponible.

Citas

Anand, A., Trivedi, N. K., Gautam, V., Tiwari, R. G., Witarsyah, D., & Misra, A. (2022). Applications of Internet of Things(IoT) in Agriculture: The Need and Implementation. Proceedings - International Conference Advancement in Data Science, E-Learning and Information Systems, ICADEIS 2022. https://doi.org/10.1109/ICADEIS56544.2022.10037505

Dagar, R., Som, S., & Khatri, S. K. (2018). Smart farming—IoT in agriculture. En Proc. IEEE Int. Conf. Inventive Res. Comput. Appl. (ICIRCA) (pp. 1052–1056). Coimbatore, India.

Dey, S., & Bera, T. (2023). Design and Development of a Smart and Multipurpose IoT Embedded System Device Using ESP32 Microcontroller. IEEE International Conference on Electrical, Electronics, Communication and Computers, ELEXCOM 2023. https://doi.org/10.1109/ELEXCOM58812.2023.10370327

Ivanov, V. v., Abdreev, I. O., Lopukhova, E. A., Voronkov, G. S., Grakhova, E. P., & Kuznetsov, I. v. (2023). Coordinated Group Codec for Systems with Highly Correlated Signals on the ESP32 Microcontroller. Proceedings - 2023 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2023, 174–177. https://doi.org/10.1109/USBEREIT58508.2023.10158848

Karanisa, T., Achour, Y., Ouammi, A., & Sayadi, S. (2022). Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar. Environment Systems and Decisions, 42(4), 521–546. https://doi.org/10.1007/s10669-022-09862-2

Kaur, H., Shukla, A. K., & Singh, H. (2022). Review of IoT Technologies used in Agriculture. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022, 1007–1011. https://doi.org/10.1109/ICACITE53722.2022.9823520

Leong, Y. M., Lim, E. H., Subri, N. F. B., & Jalil, N. B. A. (2023). Transforming Agriculture: Navigating the Challenges and Embracing the Opportunities of Artificial Intelligence of Things. 2023 IEEE International Conference on Agrosystem Engineering, Technology and Applications, AGRETA 2023, 142–147. https://doi.org/10.1109/AGRETA57740.2023.10262747

Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2021). From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322–4334. https://doi.org/10.1109/TII.2020.3003910

Md Idros, M. F., al Junid, S. A. M., Nazamid, M. H., Abdul Razak, A. H., Halim, A. K., & Reezal, N. S. (2023). Design and IoT Implementation of Smart Greenhouse for Urban Agriculture. 2023 IEEE International Conference on Applied Electronics and Engineering, ICAEE 2023. https://doi.org/10.1109/ICAEE58583.2023.10331046

Morales-García, J., Bueno-Crespo, A., Martínez-España, R., García, F. J., Ros, S., Fernández-Pedauyé, J., & Cecilia, J. M. (2023). SEPARATE: A tightly coupled, seamless IoT infrastructure for deploying AI algorithms in smart agriculture environments. Internet of Things (Netherlands), 22. https://doi.org/10.1016/j.iot.2023.100734

Mujeeb Rahman, K. K., Mohamed, N. N., Zidan, R., Alsarraj, I., & Hasan, B. (2023). IOT-Based Wireless Patient Monitor Using ESP32 Microcontroller. 2023 24th International Arab Conference on Information Technology, ACIT 2023. https://doi.org/10.1109/ACIT58888.2023.10453847

Panwar, N., Kaushik, S., & Kothari, S. (2011). Solar greenhouse an option for renewable and sustainable farming. Renewable & Sustainable Energy Reviews, 15(8), 3934–3945.

Picking, R., Glyndŵr University. ARCLab, Institute of Electrical and Electronics Engineers. United Kingdom and Republic of Ireland Section, & Institute of Electrical and Electronics Engineers. (n.d.). 2017 Internet Technologies and Applications (ITA) : proceedings of the Seventh International Conference : Tuesday 12th - Friday 15th September 2017, Wrexham Glyndŵr University, Wales, UK.

Priandana, K., & Wahyu, R. A. F. (2020, February 1). Development of Automatic Plant Irrigation System using Soil Moisture Sensors for Precision Agriculture of Chili. Proceeding - ICoSTA 2020: 2020 International Conference on Smart Technology and Applications: Empowering Industrial IoT by Implementing Green Technology for Sustainable Development. https://doi.org/10.11015706158969/ICoSTA48221.2020.

Rayhana, R., Xiao, G., & Liu, Z. (2020). Internet of Things Empowered Smart Greenhouse Farming. IEEE Journal of Radio Frequency Identification, 4(3), 195–211. https://doi.org/10.1109/JRFID.2020.2984391

Sarathkumar, D., Raj, R. A., Akbar, S. S., Rajesh Kanna, R., Andrews, L. J. B., & Alagappan, A. (2024). IOT Based Motor Control and Line Detection for Smart Agriculture. 2024 IEEE International Students’ Conference on Electrical, Electronics and Computer Science, SCEECS 2024. https://doi.org/10.1109/SCEECS61402.2024.10482316

Tiwari, G. (2003). Greenhouse Technology for Controlled Environment. Harrow, U.K.: Alpha Sci. Int. Ltd.

Tondato De Faria, B., Tercete, G. M., & Filev Maia, R. (2022). The effectiveness of IoT and machine learning in Precision Agriculture. 2022 Symposium on Internet of Things, SIoT 2022. https://doi.org/10.1109/SIoT56383.2022.10070308

Vatari, S., Bakshi, A., & Thakur, T. (2016). Green house by using IoT and cloud computing. En Proc. IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. (RTEICT) (pp. 246–250). Bangalore, India.

Vijh, S., Arpita, Bora, J. P., Gupta, P. K., & Kumar, S. (2024). IOT Based Real-Time Monitoring System for Precision Agriculture. 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 53–58. https://doi.org/10.1109/Confluence60223.2024.10463399

Wiangtong, T., & Sirisuk, P. (2018). IoT-based versatile platform for precision farming. En Proc. IEEE 18th Int. Symp. Commun. Inf. Technol. (ISCIT) (pp. 438–441). Bangkok, Thailand.

Publicado
2024-07-05
Cómo citar
Morán Cabezas, A. L., Casquete Menéndez, S. S., & Morán Cabezas, J. L. (2024). Implementación de un sistema telemático para monitorear y controlar invernaderos en un campus universitario, optimizando la agricultura sostenible. Ciencia Huasteca Boletín Científico De La Escuela Superior De Huejutla, 12(24), 13-23. https://doi.org/10.29057/esh.v12i24.12795