Papel pleiotrópico y homeostático de las Sirtuinas en la función biológica humana.

  • Marco Antonio Hernández Bedolla Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-4947-8852
  • Alma Barajas Espinosa Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-3961-3280
  • Fernando Ochoa Cortés Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-1559-8012
  • Dulce Edith Alonzo Alonso Universidad Autónoma del Estado de Hidalgo
  • Abizai Herrera Hernández Universidad Autónoma del Estado de Hidalgo
  • Zaida Burgos Ostoa Universidad Autónoma del Estado de Hidalgo
  • Itzel Guadalupe Díaz Salguero Universidad Autónoma del Estado de Hidalgo
Palabras clave: Sirtuinas, envejecimiento, metabolismo, ADN

Resumen

Las sirtuinas son una familia de enzimas dependientes de nicotinamida adenina dinucleótido (NAD+) expresadas de manera ubicua. Sus principales funciones se ven reflejadas en: regular el silenciamiento génico, estabilidad cromosómica, y metabolismo al eliminar las modificaciones de acil-lisina de una variedad de proteínas. La primera sirtuina conocida fue SIR2 (regulador de información silencioso 2), aislada de Saccharomyces cerevisiae, a la cual la familia debe su nombre. De dicha proteína se presentan 7 homólogos en mamíferos, conocidos como SIRT1-7, las cuales se diferencian según su localización subcelular, actividad catalítica y funciones atribuidas. Las sirtuinas han ganado considerable atención por su impacto en la fisiología de los mamíferos, proporcionando blancos nuevos para el tratamiento de diferentes enfermedades del humano. En esta revisión, ilustramos la historia de las sirtuinas, desde levadura hasta el humano, así como su papel en la fisiología y patología humana.

Descargas

La descarga de datos todavía no está disponible.

Citas

Klar AJ, Fogel S, Macleod K. MAR1-A regulator of the HMa and HMα locus in Saccharomyces cerevisiae. Genetics. 1979 Sep 1979 93 (1), 37–50.

Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics. 1987 May;116(1):9-22.

Shore D, Squire M, Nasmyth KA. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J. 1984 Dec 3 (12), 2817–2823.

Ivy JM, Hicks JB, Klar AJ. Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics. 1985 Dec 111(4), 735–744.

Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell. 1989 Mar 56 (5), 771–776 doi: 10.1016/0092-8674(89)90681-8.

Aparicio OM, Billington BL, Gottscghling DE. Modifiers. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991 Sep 20;66(6):1279-87 doi: 10.1016/0092-8674(91)90049-5.

Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 1993 Apr 7 (4), 592–604 doi: 10.1101/gad.7.4.592.

Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995 Dec 9 (23), 2888–2902 doi: 10.1101/gad.9.23.2888.

Derbyshire MK, Weinstock KG, Strathern JN. HST1, a new member of the SIR2 family of genes. Yeast. 1996 jun 12 (7), 631–640 doi: 10.1002/(SICI)1097-0061(19960615)12:7%3C631::AID- YEA960%3E3.0.CO;2-8.

Szegö, EM., Outeiro, TF. & Kazantsev, AG. (2018). Sirtuins in brain and neurodegenerative disease. In Guarente, L., Mostoslavsky, R. & Kazantsev, A., Introductory Review on Sirtuins in Biology, Aging, and Disease (p.p. 175-189). USA: Elsevier.

Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 2005 Oct 16 (10), 4623–4635 doi: 10.1091/mbc.e05-01-0033.

Frye, RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999 Jun 24; 260(1):273-9 doi: 10.1006/bbrc.1999.0897.

North BJ, Marshall BL, Borram MT, Denum JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003 feb 11(2):437-44 doi: 10.1101/gad.13.19.2570.

Vaziri H, Dessain SK, Eaton EN, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001 oct 19;107(2):149-59 doi: 10.1016/s0092-8674(01)00527-x.

Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017 Aug;18(4):447-476. doi: 10.1007/s10522-017-9685-9.

Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013 Jun 50(6), 919-30 doi: 10.1016/j.molcel.2013.06.001.

Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metabol. 2013 Dec 18(6), 920-33 doi: 10.1016/j.cmet.2013.11.013.

Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006 Sep 8;126(5):941-54 doi: 10.1016/j.cell.2006.06.057.

Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 2005 jun 3;280(22):21313-21320 doi: 10.1074/jbc.M413296200.

Zhang C, Zhai z, Tang M, et al. Quantitative proteome-based systematic identification of SIRT7 substrates. Proteomics. 2017 Jul; 17:13-14 doi:10.1002/pmic.201600395.

Li L, Shi L, Yang S, Yan R, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016 jul; 7:12235. Doi: 10.1038/ncomms12235.

Sinclair DA, Guarente L. Small-molecule allosteric activators of sirtuins. Annual Rev Pharmacol Toxicol. 2014; 54: 363-80 doi: 10.1146/annurev-pharmtox-010611-134657.

Satoh A, Imai S. Systemic regulation of mammaalian ageing and longevity by brain sirtuins. Nat Comm. 2014 jun 26; 5:4211. doi: 10.1038/ncomms5211.

Kaeberlein M, McVey M & Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999 Oct 1;13(19):2570-80 doi: 10.1101/gad.13.19.2570.

Imai S, Armstrong CM, Kaeberlein M & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403 (6771):795-800 doi: 10.1038/35001622.

Landry J, Sutton A, Trafov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA. 2000 May 23;97(11):5807-11 doi: 10.1073/pnas.110148297.

Rogina B, Helfand SL. 2004. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA. 2004 nov 9;101(45):15998-6003 doi: 10.1073/pnas.0404184101.

Banerjee KK, Ayyub C, Ali SZ, Mandot V, Prasad NG, Kolthur-Seetharam U. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2012 Dec 27;2(6):1485-91 doi: 10.1016/j.celrep.2012.11.013.

Huang J, Moazed D. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev. 2003 Sep 1;17(17):2162-76 doi: 10.1101/gad.1108403.

Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004; 73:417-35 doi: 10.1146/annurev.biochem.73.011303.073651.

Bupp JM. Martin AE, Stensrud ES, Jaspersen SL. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Msp3. J Cell Biol. 2007 Dec 3;179(5):845-54 doi: 10.1083/jcb.200706040.

Kueng S, Tsai-Pflugfelder M, Oppikofer M, et al. Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization epigenetic states. PLoS Genet. 2012;8(5): e1002727 doi: 10.1371/journal.pgen.1002727.

Larin ML, Harding K, Williams EC, et al. Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin. PLoS Genet. 2015 Nov 20;11(11): e1005425 doi: 10.1371/journal.pgen.1005425.

Kahana A, Gottschling DE. DOT4 links silencing and cell growth in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Oct;19(10):6608-20 doi: 10.1128/mcb.19.10.6608.

Boulton SJ, Jackson SP. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 1998 Mar 16;17(6):1819-1828 doi: 10.1093/emboj/17.6.1819.

Guidi M, Ruault M, Marbouty M, Loïodice I, et al. Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol. 2015 Sep 23; 16, 206 doi: 10.1186/s13059-015-0766-2.

Garcia EJ, de Jonge JJ, Liao PC, Stivison E, et al. Reciprocal interactions between mtDNA and lifespan control in budding yeast. Mol Biol Cell. 2019 Nov 15;30(24):2943-2952 doi: 10.1091/mbc.E18-06-0356.

Larin ML, Harding K, Williams EC, et al. Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin. PLoS Genet. 2015 Nov 20;11(11): e1005425 doi: 10.1371/journal.pgen.1005425.

Deshpande I, Keusch JJ, Challa K. Iesmantavicius V, Gasser SM, Gut H. The Sir4 H-BRCT domain interacts with phosphor-proteins to sequester and repress yeast heterochromatin. EMBO J. 2019 Oct 15;38(20): e101744 doi: 10.15252/embj.2019101744.

Lapetina DL, Ptak C, Roesner UK, Wozniak RW. Yeast silencing factor Sir4 and subset of nucleoporins form a complex distinct from nuclear pore complexes. J Cell Biol. 2017 Oct 2;216(10):3145-3159 doi: 10.1083/jcb.201609049.

Guarente L. (2018). Sirtuins, NAD+, againg, and disease: A retrospective and prospective overview. In Guarente, L., Mostoslavsky, R. & Kazantsev, A., Introductory Review on Sirtuins in Biology, Aging, and Disease (p.p. 1-6). USA: Elsevier.

De Ruijter A, H. van-Gennip A, Huid-N C, Kemp S, BP van-Kuilenburg A. Histone deacetylases (HDACs): characterizacion of the classical HDAC family. Biochem J. 2003 Mar 15;370(Pt 3):737-49 doi: 10.1042/BJ20021321.

Edatt L, Poyyakkara A, Raji GR, Ramachandran V, Shankar SS, Sammer-Kumar VBS. Role of sirtuins in tumor angiogénesis. Fron Oncol. 2020 Jan 17; 9,1516 doi:10.3389/fonc.2019.

Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem. 2006 75:435–65 doi: 10.1146/annurev.biochem.74.082803.133500.

Jackson MD, Denu JM. Structural identification of 2′-and 3′-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta-NAD+-dependent histone/protein deacetylases. J Biol Chem. 2002 277:18535–18544 doi: 10.1074/jbc.M200671200.

Frye, RA. Phylogenetic classification of prokaryotic and eukaryotic Sir-like proteins. Biochem Biophys Res Commun. 2000 jul 5;273(2):793-8 doi: 10.1006/bbrc.2000.3000.

Min J, Landry J, Sternglanz R, Xu RM. Crystal structure of a SIR2 homolog–NAD complex. Cell. 2001 105:269–79 doi: 10.1016/s0092-8674(01)00317-8.

Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009 Jun 30 Suppl 1, S162-S173 doi: 10.1002/elps.200900140.

Bienert S, Waterhouse A, de Beer TAP, et al. The SWISS-MODEL Repository - new features and functionality. Nucleic Acids Res. 2017 Jan 45 (D1), D313-D319 doi: 10.1093/nar/gkw1132.

Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep. 2017 Sep 7 (1), 10480 doi: 10.1038/s41598-017-096554-8.

Waterhouse A, Bertoni M, Bienert S, Studer G, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul 46(W1), W296-W303 doi: 10.1093/nar/gky427.

Nasrin N, Kaushik VK, Fortier E, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One. 2009 Dec 22;4(12): e8414 doi: 10.1371/journal.pone.0008414.

Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol. Endocrinol. 2007, 21, 1745–1755.

Mathias RA, Greco TM, Oberstein A, et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell. 2014 Dec 18;159(7):1615-25 doi: 10.1016/j.cell.2014.11.046.

Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+ -dependent histone that translocates to the mitochondria upon cellular stress. Genes Dev. 2007 Apr 15;21(8):920-8 doi: 10.1101/gad.1527307.

Sundaresan NR, Samant SA, Pillai VB, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008 Oct;28(20):6384-401. doi: 10.1128/MCB.00426-08.

Matsushita N, Yonashiro R, Ogata Y, et al. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells. 2011 feb;16(2):190-202. doi: 10.1111/j.1365-2443.2010.01475. x.

Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol. Endocrinol. 2007, 21, 1745–1755.

Zhu S, Dong Z, Ke X, Hou J, et al. The roles of sirtuins family in cell metabolism during tumor development. Semin Cancer Biol. 2019 Aug; 57:59-71. doi: 10.1016/j.semcancer.2018.11.003.

George J, Ahmad N. Mitochondrial Sirtuins in Cancer: Emerging Roles and Therapeutic Potential. Cancer Res. 2016 Jun 15;76(12):3655. doi: 10.1158/0008-5472.CAN-16-1310.

Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005; 434:113-18. doi.org/10.1038/nature03354.

Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD (+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011 Oct 5;14(4):528-36. doi: 10.1016/j.cmet.2011.08.014.

Choi SE, Fu T, Seok S, et al. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell. 2013 Dec;12(6):1062-72. doi: 10.1111/acel.12135.

Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007 oct;6(4):307-19. doi.org/10.1016/j.cmet.2007.08.014.

Sasaki T. Age-associated weight gain, leptin, and SIRT1: a possible role for hypothalamic SIRT1 in the prevention of weight gain and aging through modulation of leptin sensitivity. Front Endocrinol (Lausanne). 2015 Jul 16;6:109. doi: 10.3389/fendo.2015.00109.

Alcendor RR, Gao S, Zhai P, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007 May 25;100(10):1512-21 doi.org/10.1161/01.RES.0000267723.65696.4a.

Yamamoto T, Byun J, Zhai P, et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One. 2014 Jun 6;9(6):e98972. doi: 10.1371/journal.pone.0098972.

Bellet MM, Masri S, Astarita G, et al. Histone deacetylase SIRT1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in mice. J Biol Chem. 2016 Oct 28;291(44):23318- 23329. doi.org/10.1074/jbc.M116.737114.

Hsu CP, Zhai P, Yamamoto T, Maejima Y, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 2010 nov 23;122(21):2170-82. doi: 10.1161/CIRCULATIONAHA.110.958033.

Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res. 2004 Nov 12;95(10):971-80.

Igarashi M, Guarente L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell. 2016 Jul 14;166(2):436-450. doi: 10.1016/j.cell.2016.05.044.

Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007 oct 15;21(20):2644-58.

Liu F, Lin C, Hong J, et al. Apocynin protects retina cells from ultraviolet radiation damage via inducing sirtuin 1. J Drug Target. 2020 Mar;28(3):330-338. doi: 10.1080/1061186X.2019.1663527.

Julien C, Tremblay C, Emond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009 Jan 68 (1), 48-58 doi:10.1097/NEN.0b013e3181922348.

Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006 Aug 281 (31), 21745-54 doi:10.1074/jbcM602909200.

Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003 May;23(9):3173-85.

Jiang W, Wang S, Xiao M, Lin Y, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011 Jul 8;43(1):33-44. doi: 10.1016/j.molcel.2011.04.028.

Anwar T, Khosla S, Ramakrishna G. Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status. Cell Cycle. 2016 Jul 17;15(14):1883-97. doi: 10.1080/15384101.2016.1189041.

Ji S, Doucette, JR, Nazarali, AJ. Sirt2 is a novel in vivo downstream target of Nkx2.2 and enhances oligodendroglial cell differentiation. J Mol Cell Biol. 2011 Dec;3(6):351-9. doi: 10.1093/jmcb/mjr009.

Wang G, Li S, Gilbert J, Gritton HJ, et al. Crucial Roles for SIRT2 and AMPA Receptor Acetylation in Synaptic Plasticity and Memory. Cell Rep. 2017 Aug 8;20(6):1335-1347. doi: 10.1016/j.celrep.2017.07.030.

D’Onofrio N, Servillo L, Giovane A, Casale R, et al. Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: involvement of SIRT1 and SIRT6. Free Radic Biol Med. 2016 Jul;96:211-22. doi: 10.1016/j.freeradbiomed.2016.04.013.

Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13653-8 doi: 10.1073/pnas.222538099.

Kumar S, Lombard DB. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal. 2015 Apr 20;22(12):1060-77 doi: 10.1089/ars.2014.6213.

Zhang T, Zhou Y, Li L, Wang H, et al. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging. Aging (Albany NY) 2016 Apr;8(4):685-96. doi: 10.18632/aging.100911.

Hershberger KA, Martin AS, Hirschey MD. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol. 2017 Apr;13(4):213-225. doi: 10.1038/nrneph.2017.5.

Hallows WC, Yu W, Smith BC, Devries MK, Devires MK, Ellinger JJ, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 2011 41:13949.

Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010 12:65461.

Tseng AH, Wu LH, Shieh SS, Wang DL. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem J. 2014 Nov 15;464(1):157-68. doi: 10.1042/BJ20140213.

Anderson KA, Huynh FK, Fisher-Wellman K, et al. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion. Cell Metab. 2017 Apr 4;25(4):838-855.e15 doi: 10.1016/j.cmet.2017.03.003.

Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006 Sep 8;126(5):941-54.

Mathias RA, Greco TM, Oberstein A, et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell. 2014 Dec 18;159(7):1615-25. doi: 10.1016/j.cell.2014.11.046.

Chen Y, Wang H, Luo G, Dai X. SIRT4 inhibits cigarette smoke extracts induced mononuclear cell adhesion to human pulmonary microvascular endothelial cells via regulating NF-κB activity. Toxicol Lett. 2014 May 2;226(3):320-7. doi: 10.1016/j.toxlet.2014.02.022.

Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009 May 1;137(3):560-70. doi: 10.1016/j.cell.2009.02.026.

Du J, Zhou Y, Su X, Khan S, et al. Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011 nov 11;334(6057):806-9 doi: 10.1126/science.1207861.

Nishida Y, Rardin MJ, Carrico C, He W, et al. SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target. Mol Cell. 2015 jul 16;59(2):321-32 doi: 10.1016/j.molcel.2015.05.022.

Xiangyun Y, Xiaomin N, Linping G, Yunhua X, et al. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 2017 Jan 24;8(4):6984-6993. doi: 10.18632/oncotarget.14346.

Yu BB, Zhi H, Zhang XY, Liang JW, et al. Mitochondrial dysfunction-mediated decline in angiogenic capacity of endothelial progenitor cells is associated with capillary rarefaction in patients with hypertension via downregulation of CXCR4/JAK2/SIRT5 signaling. EBioMedicine. 2019 Apr;42:64-75. doi: 10.1016/j.ebiom.2019.03.031.

Michishita E, McCord RA, Berber E, Kioi M, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008 Mar 27;452(7186):492-6 doi: 10.1038/nature06736.

Jiang H, Khan S, Wang Y, Charron G, et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013 Apr 4;496(7443):110-3. doi: 10.1038/nature12038.

Zhang X, Khan S, Jiang H, Antonyak MA, et al. Identifying the functional contribution of the defatty-acylase activity of SIRT6. Nat Chem Biol. 2016 Aug;12(8):614-20. doi: 10.1038/nchembio.2106.

Zhang N, Li Z, Mu W, Li L, Liang Y, Lu M, et al. Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling. Cell Cycle. 2016;15(7):1009-18. doi: 10.1080/15384101.2016.

Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res. 2013 Mar 97:571–9. doi: 10.1093/cvr/cvs352.

Taselli L, Xi Y, Zheng W, Tennen RI, et al. SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence. Nat Struct Mol Biol. 2016 May;23(5):434-40. doi: 10.1038/nsmb.3202.

Kanfi Y, Naiman S, Amir G, Peshti V, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012 Feb 22;483(7388):218-21. doi: 10.1038/nature10815.

Kiran S, Chatterjee N, Singh S, et al. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 2013 Jul 280 (14), 3451-66 doi: 10.1111/febs.12346.

Blank MF, Chen S, Poetz F, et al. SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription. Nucleic Acids Res. 2017 Mar 45 (5), 2675-2686 doi: 10.1093/nar/gkx053.

Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006 May 1;20(9):1075-80 doi: 10.1101/gad.1399706.

Tsai Y-C, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics. 2012 Feb; 11 (2), M111.015156 doi: 10.1074/mcp.M111.015156.

Lee N, Kim DK, Kim ES, et al. Comparative interactomes of SIRT6 and SIRT7: implication of functional links to aging. Proteomics. 2014 Jul; (13-14), 1610-22. doi: 10.1002/pmic.201400001.

Ryu D, Jo YS, Sasso GL, Stein S, et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. 2014 nov; 20 (5), 856-69 doi: 10.1016/j.cmet.2014.08.001.

Kiran S, Oddi V, Ramakrishna G. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SPAK activation and p53 response. Exp Cell Res. 2015 feb; 331 (1), 123-141 doi: 10.1016/j.yexcr.2014.11.001.

Chen EEM, Zhang W, Ye CC, Gao X, et al. Knockdown of SIRT7 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the Wnt/β-catenin signaling pathway. Cell Death Dis. 2017 sep; 8 (9), e3042 doi: 10.1038/cddis.2017.429.

Kuang J, Zhang Y, Lu Q, Shen J, et al. Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes. 2017 may; 66 (5), 1159-1171 doi:10.2337/db16-1225.

Chalkiadaki A, Guarente L. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 2012 Aug 16 (2):180-8 doi:10.1016/j.cmet.2012.07.003.

de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016 Jun 15 (3), 522-30 doi:10.1111/acel.12461.

Cho S-H, Chen JA, Sayed F, et al. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J Neurosci. 2015 Jan 35 (2), 807-18 doi:10.1523/JNEUROSCI.2939-14.2015.

Körner S, Böselt S, Thau N, et al. Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: neuroprotective or neurotoxic properties of sirtuins in ALS? Neurodegener Dis. 2013 11 (3),141-52 doi:10.1159/000338048.

Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008 Oct 14(4),312-23 doi:10.1016/j.ccr.2008.09.001.

Herranz D, Maraver A, Cañamero M, Gomez-Lopez G, et al. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene. 2013 Aug 32(34), 4052-6 doi:10.1038/onc.2012.407.

Wang RH, Zheng Y, Kim HS, Xu X, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol. Cell. 2008 Oct 32 (1), 11–20 doi: 10.1016/j.molcel.2008.09.011.

Herranz D, Maraver A, Cañamero M, Gómez-López G, et al. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene. 2013 Aug 32 (34) 4052–4056 doi:10.1038/onc.2012.407.

Chen X, Sun K, Jiao S, et al. High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci. Rep. 2014 Dec 4, 7481 doi: 10.1038/srep07481.

Yuan H, Wang Z, Li l, Zhang H, et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood. 2012 Feb 119 (8), 1904–1914 doi:10.1182/blood-2011-06-36691.

Tang X, Chen XF, Wang NY, Wang XM, et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation. 2017 Nov 136(21), 2051-2067 doi:10.1161/CIRCULATIONAHA.117.028728.

Biella G, Fusco F, Nardo E, et al. Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-β protein precursor processing in two Alzheimer’s disease mouse models. J Alzheimers Dis. 2016 Jun 53 (3), 1193-1207 doi: 10.3233/JAD-151135.

Chopra V, Quinti L, Kim J, et al. The Sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep. 2012 Dec 2 (6),1492-7 doi: 10.1016/j.celrep.2012.11.011.

Luo H, Mu WC, Kark R, Chiang HH, et al. Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep. 2019 Jan 26 (4), 945–954 e.4 doi: 10.1016/j.celrep.2018.12.101.

Zandi S, Hedayati MA, Mohammadi E, Sheikhesmaeili F. Helicobacter pylori infection increases sirt2 gene expression in gastric epithelial cells of gastritis patients. Microb Pathog. 2018 Mar 116, 120–123 doi: 10.1016/j.micpath.2017.12.078.

Liu G, Park SH, Imbesi M, Nathan WJ, et al. Loss of NAD-Dependent protein deacetylase Sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxid. Redox Signal. 2017 May 26 (15), 849–863 doi: 10.1089/ars.2016.6662.

Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011 Oct 20(4), 487-99 doi: 10.1016/j.ccr.2011.09.004.

Zhao E, Hou J, Ke X, et al. The roles of sirtuin family proteins in cancer progression. Cancers (Basel). 2019 Dec 11 (12) doi: 10.3390/cancers11121949.

Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007 Dec 27 (24), 8807-14 doi: 10.1128/MCB.01636-07.

Hirschey MD, Shimazu T, Jing E, Grueter CA, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011 Oct 21;44(2):177-90. doi: 10.1016/j.molcel.2011.07.019.

Shi H, Deng HX, Gius D, Schumacker PT, Surmeier DJ, Ma YC. Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum Mol Genet. 2017 May 26 (10), 1915-1926 doi: 10.1093/hmg/ddx100.

Fu J, Jin J, Cichewicz RH, Hageman SA, Ellis TK, Xiang L, et al. trans-(-)-ε-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J Biol Chem. 2012 Jul 287 (29), 24460-72 doi: 10.1074/jbc.M112.382226.

Morigi M, Perico L, Rota C, Longaretti L, Conti S, Rottoli D, et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest. 2015 125, 715-26.

Lai CC, Lin PM, Lin SF, Hsu CH, et al. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 2013 Jun 34 (3), 1847-54 doi: 10.1007/s13277-013-0726-y.

Dong X-C, Jing L-M, Wang W-X, Gao Y-X. Down-regulation of SIRT3 promotes ovarian carcinoma metastasis. Biochem Biophys Res Commun. 2016 Jul 475 (3), 245-50 doi: 10.1016/j.bbrc.2016.05.098.

Song CL, Tang H, Ran LK, Ko BC, et al. Sirtuin 3 inhibits hepatocellular carcinoma growth through the glycogen synthase kinase-3beta/BCL2-associated X protein-dependent apoptotic pathway. Oncogene. 2016 Feb 35 (5), 631-41 doi: 10.1038/onc.2015.121.

Luo Y-X, Tang X, An X-Z, Xie X-M, Chen X-F, Zhao X, et al. Sirt4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J. 2017 May 38(18), 1389-98 doi:10.1093/eurheartj/ehw138.

Laurent G, German NJ, Saha AK, de Boer VCJ, Davies M, Koves TR, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell. 2013 Jun 50 (5), 686-98 doi: 10.1016/j.molcel.2013.05.012.

Guo L, Zhou SR, Wei XB, Liu Y, Chang XX, et al. Acetylation of mitochondrial trifunctional protein alpha subunit enhances its stability to promote fatty acid oxidation and is decreased in NAFLD. Mol Cell Biol. 2016 Sep 36 (20), 2553–67 doi: 10.1128/MCB.00227-16.

Nasrin N, Wu X, Fortier E, Feng Y, Bare OC, Chen S, Ren X, Wu Z, Streeper RS, and Bordone L. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010 Oct 285 (42), 31995–32002 doi:10.1074/jbc.M110.124164.

Hu Y, Lin J, Lin Y, Chen X, Zhu G, Huang G. Overexpression of SIRT4 inhibits the proliferation of gastric cancer cells through cell cycle arrest. Oncol. Lett. 2019 Feb 17 (2), 2171–2176 doi: 10.3892/ol.2018.9877.

Fu L, Dong Q, He J, Wang X, Xing J, Wang E, Qiu X, Li Q. SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene. 2017 May 36 (19), 2724–2736 doi: 10.1038/onc.2016.425.

Miyo M, Yamamoto H, Konno M, Colvin H, et al. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br. J. Cancer. 2015 Jul 113(3), 492–499 doi:10.1038/bjc.2015.226.

Sun H, Huang D, Liu G, Jian F, Zhu J, Zhang L. SIRT4 acts as a tumor suppressor in gastric cancer by inhibiting cell proliferation, migration, and invasion. OncoTargets Ther. 2018 Jul 11, 3959-3968 doi: 10.2147/OTT.S156143.

Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci 2016 Apr 113(16), 4320-5 doi: 10.1073/pnas.1519858113.

Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 2015 Nov 88, 73-81 doi: 10.1016/j.yjmcc.2015.09.005.

Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, Chen W, et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A. 2016 Apr 113(16), 4320–4325 doi: 10.1073/pnas.1519858113.

Liu L, Peritore C, Ginsberg J, Shih J, Arun S, Donmez G. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behav Brain Res. 2015 Mar 281, 215–221 doi: 10.1016/j.bbr.2014.12.035.

Wang Q, Yu S, Simonyi A, Sun GY, Sun AY. Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol. 2005 31 (1–3), 3–16 doi: 10.1385/MN:31:1-3:003.

Li F, Liu L. SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2. Front Cell Neurosci. 2016 Jun 10:171 doi: 10.3389/fncel.2016.00171.

Liang F, Wang X, Ow SH, Chen W, Ong WC. Sirtuin 5is Anti-apoptotic and Anti-oxidative in Cultured SH-EP Neuroblastoma Cells. Neurotox. Res. 2017 Jan 31(1), 63–76 doi:10.1007/s12640-016-966-y.

Zhang RX, Wang CY, Tian Y, Yao YF, et al. SIRT5 Promotes Hepatocellular Carcinoma Progression by Regulating Mitochondrial Apoptosis. J.Cancer. 2019 Jun 10 (16), 3871–3882 doi: 10.7150/jca.31266.

Guo D, Song XH, Guo TF, Gu SG, Chang XL, et al. Vimentin acetylation is involved in SIRT5-mediated hepatocellular carcinoma migration. Am. J. Cancer Res. 2018 Dec 8 (12), 2453–2466.

Bringman-Rodenbarger LR, Guo AH, Lyssiotis CA, Lombard DB. Emerging Roles for SIRT5 in Metabolism and Cancer. Antioxid. Redox Signal. 2018 Mar 28 (8), 677–690 doi: 10.1089/ars.2017.7264.

Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006 Jan 124(2), 315-29 doi: 10.1016/j.cell.2005.11.044.

Kuang J, Zhang Y, Liu Q, Shen J, Pu S, Cheng S, et al. Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes. 2017 May;66(5):1159-1171. doi: 10.2337/db16-1225.

Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012 Nov 18 (11), 1643-50 doi: 10.1038/nm.2961.

Shin J, He M, Liu Y, Paredes S, et al. SIRT7 represses myc activity to suppresser stress and prevent fatty liver disease. Cell Rep. 2013 Nov 5 (3), 654-65 doi: 10.1016/j.celrep.2013.10.007.

Vazquez BN, Thackray JK, Simonet NG, et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J. 2016 Jul 35 (14), 1488-503 doi: 10.15252/embj.201593499.

Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008 Mar 102 (6), 703-10 doi: 10.1161/CIRCRESAHA.107.164558.

Hubbi ME, Hu H, Gilkes DM, Semenza GL. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem. 2013 Jul 288 (29), 20768–75 doi: 10.1074/jbc.M113.476903.

Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, et al. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun. 2017 Aug 8 (1), 318 doi: 10.1038/s41467-017-00396-9.

Rokutanda T, Izumiya Y, Araki S, Hanatani S, Bober E, Braun T, et al. Sirt7 regulates endothelial cell functions and promotes angiogenic response in mice model of hindlimb ischemia. Circulation. 2012 126: A10980.

Li W.; Zhu, D.; Qin, S. SIRT7 suppresses the epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis by promoting SMAD4 deacetylation. J.Exp. Clin. Cancer Res. 2018 Jul 37 (1), 148 doi: 10.1186/s13046-018-0819-y.

He X, Zeng H, Chen ST, Roman RJ, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol. 2017 Nov;112:104-113. doi: 10.1016/j.yjmcc.2017.09.007.

Li Y, Meng X, Wang W, Liu F, et al. Cardioprotective effects of SIRT6 in a mouse model of transverse aortic constriction-induced heart failure. Front Physiol. 2017 Jun 13;8:394. doi: 10.3389/fphys.2017.00394.

Publicado
2020-07-05
Cómo citar
Hernández Bedolla, M. A., Barajas Espinosa, A., Ochoa Cortés, F., Alonzo Alonso, D. E., Herrera Hernández, A., Burgos Ostoa, Z., & Díaz Salguero, I. G. (2020). Papel pleiotrópico y homeostático de las Sirtuinas en la función biológica humana. Ciencia Huasteca Boletín Científico De La Escuela Superior De Huejutla, 8(16), 6-20. https://doi.org/10.29057/esh.v8i16.5721

Artículos más leídos del mismo autor/a