La proteína KIM-1, un biomarcador asociado a la enfermedad renal

Palabras clave: KIM-1, biomarcador, enfermedad renal, daño agudo de riñón, enfermedad renal crónica

Resumen

La enfermedad renal o de riñón es una anormalidad funcional de los riñones que tiene implicaciones en la salud. El daño agudo de riñón y la enfermedad renal crónica presentan una elevada incidencia en México y representan un problema de salud pública con repercusiones económicas importantes. El diagnóstico oportuno de la enfermedad renal tendría un efecto positivo en la eficacia del tratamiento y en el pronóstico de la enfermedad. KIM-1(Kidney Injury Molecule-1) es una glicoproteína que actúa como receptor para fosfatidilserina y TIM-4 (T-Cell Immunoglobulin and Mucin Domain-4); aunque se expresa en diferentes células y tejidos, su expresión se produce principalmente en células del epitelio tubular proximal de las nefronas. En personas sanas KIM-1 no se expresa, pero durante el daño en las células epiteliales tubulares, se sobreexpresa y su fracción soluble es secretada en orina y/o filtrada a la sangre, lo que aumenta su concentración y permite su detección en estos fluidos; por esta razón, se ha propuesto como un biomarcador de daño renal. En fases tempranas, KIM-1 tiene una función protectora ante el insulto renal, pero su expresión sostenida en células del epitelio tubular se ha asociado con la enfermedad renal crónica y la fibrosis renal. En esta revisión, describimos la estructura de KIM-1, su expresión y su función tanto en el sistema inmunológico como en la enfermedad renal.

Descargas

La descarga de datos todavía no está disponible.

Citas

Levey, A. S. et al. Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International 97, 1117-1129, doi:https://doi.org/10.1016/j.kint.2020.02.010 (2020).

Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287-1295, doi:10.1016/S0140-6736(10)60236-X (2010).

Reidenberg, M. M. Environmental factors in renal disease. Clin Exp Dial Apheresis 5, 101-109, doi:10.3109/08860228109076008 (1981).

Ricardo, A. C. et al. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 65, 412-424, doi:10.1053/j.ajkd.2014.09.016 (2015).

Pazhayattil, G. S. & Shirali, A. C. Drug-induced impairment of renal function. International journal of nephrology and renovascular disease 7, 457 (2014).

Lago, R. M., Singh, P. P. & Nesto, R. W. Diabetes and hypertension. Nature Clinical Practice Endocrinology & Metabolism 3, 667-667, doi:10.1038/ncpendmet0638 (2007).

Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A. & Rodrigues-Diez, R. R. Targeting the progression of chronic kidney disease. Nature Reviews Nephrology 16, 269-288 (2020).

Baer, P. C., Koch, B. & Geiger, H. (Multidisciplinary Digital Publishing Institute, 2020).

Lim, A. I., Tang, S. C., Lai, K. N. & Leung, J. C. Kidney injury molecule‐1: More than just an injury marker of tubular epithelial cells? Journal of cellular physiology 228, 917-924 (2013).

Kashani, K., Cheungpasitporn, W. & Ronco, C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clinical Chemistry and Laboratory Medicine (CCLM) 55, 1074-1089 (2017).

Dieterle, F. et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nature biotechnology 28, 455-462 (2010).

Song, J. et al. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology. American journal of translational research 11, 1219 (2019).

Ichimura, T. et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273, 4135-4142, doi:10.1074/jbc.273.7.4135 (1998).

Santiago, C. et al. Structures of T Cell Immunoglobulin Mucin Receptors 1 and 2 Reveal Mechanisms for Regulation of Immune Responses by the TIM Receptor Family. Immunity 26, 299-310, doi:https://doi.org/10.1016/j.immuni.2007.01.014 (2007).

Ichimura, T. et al. KIM-1/TIM-1 is a Receptor for SARS-CoV-2 in Lung and Kidney. medRxiv : the preprint server for health sciences, 2020.2009.2016.20190694, doi:10.1101/2020.09.16.20190694 (2020).

Kaplan, G. et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. The EMBO journal 15, 4282-4296 (1996).

Feigelstock, D., Thompson, P., Mattoo, P., Zhang, Y. & Kaplan, G. G. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. Journal of virology 72, 6621-6628 (1998).

Nie, M. et al. Mucin-1 Increases Renal TRPV5 Activity In Vitro, and Urinary Level Associates with Calcium Nephrolithiasis in Patients. J Am Soc Nephrol 27, 3447-3458, doi:10.1681/ASN.2015101100 (2016).

Bailly, V. et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. Journal of Biological Chemistry 277, 39739-39748 (2002).

Guo, L., Takino, T., Endo, Y., Domoto, T. & Sato, H. Shedding of kidney injury molecule-1 by membrane-type 1 matrix metalloproteinase. The Journal of Biochemistry 152, 425-432 (2012).

Lim, A. I. et al. Distinct role of matrix metalloproteinase-3 in kidney injury molecule-1 shedding by kidney proximal tubular epithelial cells. The international journal of biochemistry & cell biology 44, 1040-1050 (2012).

Schweigert, O. et al. Soluble T cell immunoglobulin and mucin domain (TIM)-1 and-4 generated by A Disintegrin And Metalloprotease (ADAM)-10 and-17 bind to phosphatidylserine. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1843, 275-287 (2014).

Bastian, F. B. et al. The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals. Nucleic Acids Research 49, D831-D847, doi:10.1093/nar/gkaa793 (2020).

Ichimura, T. et al. KIM-1/TIM-1 is a Receptor for SARS-CoV-2 in Lung and Kidney. medRxiv (2020).

McIntire, J. J., Umetsu, D. T. & DeKruyff, R. H. in Springer seminars in immunopathology. 335-348 (Springer).

Wang, Y. et al. Expression of human TIM‐1 and TIM‐3 on lymphocytes from systemic lupus erythematosus patients. Scandinavian journal of immunology 67, 63-70 (2008).

Razi, B. et al. TIM family gene polymorphism and susceptibility to rheumatoid arthritis: Systematic review and meta-analysis. PLoS One 14, e0211146-e0211146, doi:10.1371/journal.pone.0211146 (2019).

Xu, J., Yang, Y., Liu, X., Sun, J. & Wang, Y. Polymorphisms of the TIM-1 gene are associated with rheumatoid arthritis in the Chinese Hui minority ethnic population. Genet Mol Res 11, 61-69 (2012).

Meyers, J. H. et al. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nat Immunol 6, 455-464, doi:10.1038/ni1185 (2005).

Li, Z., Ju, Z. & Frieri, M. in Allergy and asthma proceedings. e21-26.

Du, P., Xiong, R., Li, X. & Jiang, J. Immune regulation and antitumor effect of TIM-1. Journal of immunology research 2016 (2016).

Das, M., Zhu, C. & Kuchroo, V. K. Tim-3 and its role in regulating anti-tumor immunity. Immunological reviews 276, 97-111, doi:10.1111/imr.12520 (2017).

Sakuishi, K., Jayaraman, P., Behar, S. M., Anderson, A. C. & Kuchroo, V. K. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends in Immunology 32, 345-349, doi:https://doi.org/10.1016/j.it.2011.05.003 (2011).

Lee, H.-H. et al. Apoptotic cells activate NKT cells through T Cell Ig-Like Mucin-Like–1 resulting in airway hyperreactivity. The Journal of Immunology 185, 5225-5235 (2010).

Xiao, S., Brooks, C. R., Sobel, R. A. & Kuchroo, V. K. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. The Journal of Immunology 194, 1602-1608 (2015).

Cherukuri, A., Mohib, K. & Rothstein, D. M. Regulatory B cells: TIM-1, transplant tolerance, and rejection. Immunol Rev 299, 31-44, doi:10.1111/imr.12933 (2021).

Gandhi, R. et al. Accelerated receptor shedding inhibits kidney injury molecule-1 (KIM-1)-mediated efferocytosis. Am J Physiol Renal Physiol 307, F205-F221, doi:10.1152/ajprenal.00638.2013 (2014).

Hesp, A. C. et al. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney international 98, 579-589, doi:10.1016/j.kint.2020.02.041 (2020).

Liu, M. et al. Signalling pathways involved in hypoxia‐induced renal fibrosis. Journal of Cellular and Molecular Medicine 21, 1248-1259 (2017).

Bonventre, J. V. & Yang, L. Kidney injury molecule-1. Current opinion in critical care 16, 556-561 (2010).

Collier, J. B. & Schnellmann, R. G. Extracellular Signal–Regulated Kinase 1/2 Regulates Mouse Kidney Injury Molecule-1 Expression Physiologically and Following Ischemic and Septic Renal Injury. Journal of Pharmacology and Experimental Therapeutics 363, 419-427 (2017).

Al-Bataineh, M. M. et al. KIM-1-mediated anti-inflammatory activity is preserved by MUC1 induction in the proximal tubule during ischemia-reperfusion injury. Am J Physiol Renal Physiol 321, F135-f148, doi:10.1152/ajprenal.00127.2021 (2021).

Gohda, T. et al. Circulating kidney injury molecule‐1 as a biomarker of renal parameters in diabetic kidney disease. Journal of diabetes investigation 11, 435-440 (2020).

Yang, L. et al. KIM-1–mediated phagocytosis reduces acute injury to the kidney. The Journal of Clinical Investigation 125, 1620-1636, doi:10.1172/JCI75417 (2015).

Sriranganathan, S., Tutunea-Fatan, E., Abbasi, A. & Gunaratnam, L. Mapping and functional characterization of murine kidney injury molecule-1 proteolytic cleavage site. Molecular and Cellular Biochemistry 476, 1093-1108, doi:10.1007/s11010-020-03975-5 (2021).

Brooks, C. R. et al. KIM‐1‐/TIM‐1‐mediated phagocytosis links ATG 5‐/ULK 1‐dependent clearance of apoptotic cells to antigen presentation. The EMBO journal 34, 2441-2464 (2015).

Zhao, X., Jiang, C., Olufade, R., Liu, D. & Emmett, N. Kidney Injury Molecule‐1 Enhances Endocytosis of Albumin in Renal Proximal Tubular Cells. Journal of cellular physiology 231, 896-907 (2016).

Humphreys, B. D. et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. The Journal of clinical investigation 123, 4023-4035, doi:10.1172/JCI45361 (2013).

Yin, C. & Wang, N. Kidney injury molecule-1 in kidney disease. Renal failure 38, 1567-1573 (2016).

Publicado
2022-01-05
Cómo citar
Reyes-Uribe, E., Hernández-Bedolla, M. A., Salazar-Flores, J., & Torres-Sánchez, E. D. (2022). La proteína KIM-1, un biomarcador asociado a la enfermedad renal. Ciencia Huasteca Boletín Científico De La Escuela Superior De Huejutla, 10(19), 20-27. https://doi.org/10.29057/esh.v10i19.8213

Artículos más leídos del mismo autor/a