Estudio del mecanismo para obtener metanol a partir de CO

Palabras clave: cúmulo, hidrogenación, catálisis, metanol, TFD

Resumen

Se realizó un estudio del mecanismo de la reacción de hidrogenación catalítica del monóxido de carbono (CO) para generar metanol con el cúmulo de rutenio tetranuclear (Ru4), aplicando la teoría de funcionales de la densidad (TFD) con el funcional de intercambio y correlación PBE y la base orbital 6-31G** para los átomos de C, O, H y para el cúmulo de rutenio se utilizó la base con un potencial nuclear efectivo LANL2DZ. Las barreras energéticas inferiores a 30 kcal/mol y DG = -13.3 kcal/mol demuestran que el mecanismo de reacción es favorable para generar metanol.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdelkareem, M. A., Lootah, M. A., Sayed, E. T., Wilberforce, T., Alawadhi, H., Yousef, B. A., & Olabi, A. G. (2021). Fuel cells for carbon capture applications. Science of The Total Environment, 769, 144243. DOI: 10.1016/j.scitotenv.2020.144243

Adams, B. D., Asmussen, R. M., Chen, A., & Mawhinney, R. C. (2011). Interaction of carbon monoxide with small metal clusters: a DFT, electrochemical, and FTIR study. Canadian Journal of Chemistry, 89(12), 1445-1456. DOI: 10.1139/v11-120

Al‐Mamoori, A., Krishnamurthy, A., Rownaghi, A. A., & Rezaei, F. (2017). Carbon capture and utilization update. Energy Technology, 5(6), 834-849. DOI:10.1002/ente.201600747

Bae, Y. C., Osanai, H., Kumar, V., & Kawazoe, Y. (2005). Atomic structures and magnetic behavior of small ruthenium clusters. Materials transactions, 46(2), 159-162. DOI: 10.2320/matertrans.46.159

Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. The Journal of chemical physics, 110(11), 5029-5036. DOI: 10.1063/1.478401

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, D. J. (2016). Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford CT

Ge, G. X., Yan, H. X., Jing, Q., & Luo, Y. H. (2011). Theoretical study of hydrogen adsorption on ruthenium clusters. Journal of Cluster Science, 22(3), 473-489. DOI: 10.1007/s10876-011-0395-1

Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica chimica acta, 28(3), 213-222. DOI: 10.1007/bf00533485

Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of chemical physics, 82(1), 270-283. DOI: 10.1063/1.448799.

Jensen, F. (2007) Introduction to Computational Chemistry Second Edition Ed. John Wiley & Sons. Cap.12. Pags. 416-417.

Loveless, B. T., Buda, C., Neurock, M., & Iglesia, E. (2013). CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts. Journal of the American Chemical Society, 135(16), 6107-6121. DOI: 10.1021/ja311848e

Ou, Z., Qin, C., Niu, J., Zhang, L., & Ran, J. (2019). A comprehensive DFT study of CO2 catalytic conversion by H2 over Pt-doped Ni catalysts. International Journal of Hydrogen Energy, 44(2), 819-834. DOI: 10.1016/j.ijhydene.2018.11.008

Rangel P. U. J., Zárate H. L. A., Camacho, M. R. L., González, M ., & Cruz, B. J. (2021). Estudio TFD de cúmulos de Pt-Ir con geometría prisma triangular. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI. DOI: 10.29057/icbi.v9iEspecial2.7996

Srivastava, S., & Pahuja, A. (2014). Magnetic properties of small ruthenium clusters in fullerene cage—A DFT study. International Journal of Modern Physics B, 28(27), 1450184. DOI: 10.1142/s0217979214501847

Sun, K., Rui, N., Zhang, Z., Sun, Z., Ge, Q., & Liu, C. J. (2020). A highly active Pt/In 2 O 3 catalyst for CO 2 hydrogenation to methanol with enhanced stability. Green Chemistry, 22(15), 5059-5066, DOI: 10.1039/d0gc01597k

Wilberforce, T., Olabi, A. G., Sayed, E. T., Elsaid, K., & Abdelkareem, M. A. (2021). Progress in carbon capture technologies. Science of The Total Environment, 761, 143203. DOI: 10.1016/j.scitotenv.2020.143203

Zhang, W., Xiao, L., Hirata, Y., Pawluk, T., & Wang, L. (2004). The simple cubic structure of Ir clusters and the element effect on cluster structures. Chemical physics letters, 383(1-2), 67-71. DOI: 10.1016/j.cplett.2003.11.005

Zeinalipour-Yazdi, C. D., Cooksy, A. L., & Efstathiou, A. M. (2008). CO adsorption on transition metal clusters: trends from density functional theory. Surface science, 602(10), 1858-1862. DOI: 10.1016/j.susc.2008.03.024

Zheng, H., Narkhede, N., Han, L., Zhang, H., & Li, Z. (2020). Methanol synthesis from CO2: a DFT investigation on Zn-promoted Cu catalyst. Research on Chemical Intermediates, 46(3), 1749-1769. DOI:10.1007/s11164-019-04061-2

Publicado
2023-07-05
Cómo citar
Reyes-Zambrano, A., Zárate-Hernández, L. Ángel, Cruz-Borbolla, J., Vásquez-Pérez, J. M., Ibarra-Ortega, I. S., & Camacho-Mendoza, R. L. (2023). Estudio del mecanismo para obtener metanol a partir de CO. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(21), 43-49. https://doi.org/10.29057/icbi.v11i21.10313